Про деток, от рождения до школы

Опыт показывает, что при нагревании некоторых твёрдых тел они способны расплавляться, то есть превращаться в жидкость, а затем испаряться. Уменьшение температуры вещества ведет к обратному процессу. Возможно превращение кристаллического вещества в газ, минуя жидкую фазу (процесс сублимации).

Агрегатные состояния

Агрегатное состояние зависит от температуры и давления над поверхностью вещества. Переходы из одного агрегатного состояния в другое, которые сопровождаются изменением характера упаковки частиц (ближний, дальний порядок, неупорядоченность), называют фазовыми переходами первого рода.

В природе вода (единственное вещество на Земле) может иметь три агрегатных состояния: твердое (это дел или снег); жидкость и газообразное (пар).

Лед имеет кристаллическую решетку, то есть его атомы четко расположены. Он сохраняет форму, обладает объемом и сохраняет его, атомы плотно упакованы.

Вода текучая субстанция. Она сохраняет объем, но не сохраняет форму, принимая форму сосуда в котором находится. Имеет нечеткое расположение частиц и большую их подвижность в сравнении со льдом.

Пары воды заполняют все предоставленное им пространство, обладают рыхлой упаковкой частиц, их можно легко сжать.

В жидком состоянии вода может находиться при нормальном атмосферном давлении при температуре от 0 o C до 100 o C. Вода - это растворитель, который необходим для течения биохимических реакций. Свойствами растворителя, она обладает благодаря полярности своих молекул. В массовом составе воды содержится 88,81% кислорода и 11,19% водорода. Если вода переходит изо льда в жидкость, то ее плотность растет. При увеличении температуры воды в диапазоне от 0 o C до +4 o C ее плотность увеличивается. С дальнейшим ростом температуры плотность воды уменьшается. При +4 o C плотность воды выше, чем плотность льда. Вода имеет высокую теплоемкость (c-удельная теплоемкость): , поэтому является хорошим переносчиком тепла. Вода — тепловой регулятор на Земле. Кроме этого вода обладает высоким поверхностным натяжением (больше только у ртути).

При давлении в одну атмосферу и температуре 0 o C и ниже вода переходит в лед. Тогда как при уменьшении температуры все тела уменьшают свой объем, вода при замерзании расширяется примерно на 9%. Аномальные свойства воды объясняют особенностью молекулярного строения. Обладая одной кристаллической структурой, лед имеет много разных форм. Это снежинки, сосульки, льдины и т.д. Лед имеет высокую удельную теплоту плавления ( (при нормальном атмосферном давлении). Лед в природе может иметь механические примеси такие как твердые частицы, капли растворов или пузырьки газов.

Переход воды в газообразное состояние можно наблюдать, нагревая при нормальном атмосферном давлении до температуры 100 o C. Газообразная вода может встречаться, например, в виде тумана, облаков.

Примеры решения задач

ПРИМЕР 1

Задание Охарактеризуйте особенности фазовых переходов воды.
Решение В природе существуют следующие тепловые процессы, происходящие (в том числе) с водой: нагревание (охлаждение); испарение (конденсация); плавление (отвердевание).

Будем считать, что все фазовые переходы происходят при нормальном атмосферном давлении. Тогда при вода кристаллизуется и становится льдом. При вода кипит и переходит в пар. Если давление уменьшать, то температура плавления воды будет медленно увеличиваться, а температура кипения уменьшаться. С ростом давления температура кипения воды увеличивается, плотность пара при кипении увеличивается, плотность жидкости уменьшается. При давлении около атм. температуры кипения и плавления практически становятся равными . Данные давление и температура называются тройной точкой воды. Если давление становится равным атм., а температура , то плотность и прочие свойства воды и ее пара становятся одинаковыми. Такая точка называется критической. В критическом состоянии жидкость имеет максимальный объем, а насыщенный пар обладает максимальным давлением.

При дальнейшем уменьшении давления вода не может существовать как жидкость, и лед превращается непосредственно в пар. Температура перехода льда в пар уменьшается при снижении давления.

Если давление высокое, то отсутствует разница между паром и водой, при этом кипение и испарение отсутствуют. Возможно существование метастабильных состояний (перенасыщенного пара или перегретой жидкости). Эти состояния могут наблюдаться длительное время, однако они не являются устойчивыми.

Диаграмма состояния приведена на рис.1. Она состоит из трех областей, которые соответствуют кристаллическому (твердому) состоянию вещества, жидкости и газообразному состоянию. Данные области разделяются кривыми, которые обозначают границы взаимно обратных процессов:

В данном материале мы рассмотрим Водяной пар , который является газообразным состоянием воды.

Газообразное состояние относится к трем основным агрегатным состояниям воды, встречающихся в природе в естественных условиях. Детально этот вопрос рассмотрен в материале Агрегатные состояния воды .

Водяной пар

Чистый водяной пар не имеет ни цвета, ни вкуса. Наибольшее скопление пара наблюдается в тропосфере.

Водяно́й пар — вода, содержащаяся в атмосфере в газообразном состоянии. Количество водяного пара в воздухе сильно меняется; наибольшее его содержание – до 4 %. Водяной пар невидим; то, что называют паром в быту (пар от дыхания на холодном воздухе, пар от кипения воды и т. п.), – это результат конденсации водяного пара, как и туман. Количество водяного пара определяет важнейшую для состояния атмосферы характеристику – влажность воздуха.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн. Под редакцией проф. А. П. Горкина. 2006.

Как образуется водяной пар

Водяной пар образуется в результате «парообразования». Парообразование происходит в результате двух процессов – испарения или кипения. При испарении пар образуется только на поверхности вещества, при кипении же пар образуется по всему объему жидкости, о чем и свидетельствуют пузырьки, активно поднимающиеся вверх во время процесса кипения. Кипение воды происходит при температурах которые зависят от химического состава водного раствора и атмосферного давления, температура кипения остается неизменной на протяжении всего процесса. Пар , образующийся в результате кипения, называется насыщенным. Насыщенный пар в свою очередь подразделяется на насыщенный сухой и насыщенный влажный пар. Насыщенный влажный пар состоит из взвешенных капелек воды, температура которых находится на уровне кипения, и соответственно самого пара, а насыщенный сухой пар не содержит капелек воды.

Так же существует «перегретый пар», который образуется при дальнейшем нагреве влажного пара, этот вид пара обладает более высокой температурой и более низкой плотностью.

Водяной пар является незаменимым элементом такого важного для нашей планеты процесса как Круговорот воды в природе .

С паром мы постоянно сталкиваем в ежедневной жизни, он появляется — над носиком чайника при кипении воды, при глажке, при посещении бани… Однако не забывайте, что, как мы уже отмечали выше, чистый водяной пар не имеет ни цвета, ни вкуса. Благодаря своим физическим свойствам и качествам, пар уже давным-давно нашел свое практическое применение в хозяйственной деятельности человека. И не только в быту, но и при решении больших глобальных задач. Долгое время пар был главной движущей силой прогресса как в прямом так и в переносном смысле этого выражения. Он использовался как рабочее тело паровых машин, самой известной из которых является ПАРОВОЗ.

Использование пара человеком

Пар и в наше время широко используется в хозяйственных и производственных нуждах:

  • в целях гигиены;
  • в лечебных целях;
  • для тушения пожаров;
  • используются тепловые свойства пара (пар как теплоноситель) – паровые котлы; паровые рубашки (автоклавов и реакторов); разогрев «смерзающихся» материалов; теплообменники; отопительные системы; пропарка бетонных изделий; в особого рода теплообменниках … ;
  • используют трансформацию энергии пара в движение – паровые машины … ;
  • стерилизация и дезинфекция – пищевая промышленность, сельское хозяйство, медицина … ;
  • пар как увлажнитель — в производстве железобетонных изделий; фанеры; в пищевой промышленности; в химической и парфюмерной промышленности; в деревообрабатывающих производствах; в сельскохозяйственном производстве … ;

Подводя итоги, отметим, что, несмотря на всю свою «незаметность», водяной пар является не только важным элементом глобальной эко-системы Земли, но так же и весьма полезным веществом для хозяйственной и экономической деятельности человека.

«Вода! У тебя нет ни вкуса, ни цвета, ни запаха, тебя невозможно описать, тобой наслаждаются, не ведая, что ты такое! Нельзя сказать, что ты необходима для жизни, ты – сама жизнь. Ты наполняешь нас невыразимой радостью

Ты – самое большое богатство на свете».

Антуан де Сент-Экзюпери.

Никого не удивляет дождь или падающий снег, гладь плавно текущей реки или озера. Другое дело – огромные просторы морей и океанов, гигантские ледники, сползающие с заоблачных высот, струи гейзеров, подобно фонтанам бьющие из-под земли. От этих красот дух захватывает. Но редко кто задумывается над тем, откуда взялись моря или реки, дождь или снег, каковы свойства воды, предстающей в таком разнообразном виде.

В истории нашей планеты вода имеет исключительно важное значение. Пожалуй, никакое другое вещество не может сравниться с водой по своему влиянию на ход тех величайших изменений, которые претерпела Земля за многие сотни миллионов лет своего существования.

Благодаря повседневному обращению с водой мы так привыкли к ней и к ее разнообразным проявлениям в природе, что часто не замечаем целого ряда ее отличительных свойств. А ведь именно этим свойствам мы обязаны тем, что наши озера и реки не промерзают зимой до дна, что сильные весенние паводки сравнительно редки, что, замерзая, вода может производить большие разрушения и т. д.

Вода – самая загадочная жидкость на Земле. Певцы древних степных народов – акыны и ашуги – издавна воспевали ее, поэты посвящали ей удивительные строки. Древние волхвы, жрецы и прочие кудесники умели управляться с водой, совершая на глазах людей настоящие чудеса. Например, вызывали проливные дожди или исцеляли «живой» водой. В России не было, пожалуй, ни одной деревни, чтобы в ней не жила бабка, умевшая заговаривать воду и таким образом исцелять болезни. А ученые по сей день, как и сотни лет назад, не могут дать ответа на вопрос: что такое вода?

Вода бывает разной - она может быть талая, родниковая, тяжелая, магнитная, «живая и мертвая», «Крещенская – святая вода». В настоящее время русским и зарубежным ученым известны свыше 175 природных и созданных изотопных разновидностей воды и более 200 видов льда. Русские ученые установили, что вода имеет неискаженную внутреннюю геометрическую форму и способна записывать, хранить и передавать различную информацию внутри организма человека и других живых существ.

Знания о воде не могут оставить человека равнодушным. Кроме того, все более большое влияние оказывает она на человеческую жизнь. Именно эти обстоятельства заставили начать работу над сбором информации по этому вопросу. В основе работы будет заложено:

➢ Анализ физических, химических и биологических свойств воды.

➢ Систематизация данных, полученных из различных источников средств массовой информации.

➢ Проведение в бытовых условиях эксперимента, направленного на установление ложности или истинности предположения о наличии «памяти» у данной структуры.

➢ Общие выводы работы по выбранной теме.

Прежде всего, определимся, что же такое вода. Четкого определения нет. С химической точки зрения, вода – структурированное вещество, состоящее из 2 атомов водорода и 1 – кислорода. С физической же – вещество, существующее в природе в трех агрегатных состояниях, обладающее соответствующими физическими свойствами.

Формулу воды знает, наверное, каждый: H2O. Графическое же изображение выглядит именно так. Путем разложения воды электрическим током удалось установить, что в воде по весу находится 11,11 % водорода и 88,89% кислорода, причем водорода выделяется из воды по объему в два раза больше, чем кислорода. Если оба эти выделившиеся газа смешать, то при комнатной температуре эта смесь может оставаться без изменения очень долго. Чтобы только 1/6 часть этой смеси превратилась в воду, нам пришлось бы ждать 54 миллиарда лет. Но стоит только поднести к этой смеси горящую спичку или пропустить через нее электрическую искру, как между водородом и кислородом моментально произойдет химическая реакция: водород сгорит в кислороде, и в результате получится вода.

Секрет состава воды ученым удалось раскрыть благодаря исследованиям компонентов атмосферного воздуха – кислорода, водорода и др. 24 июня 1783г. А. Лавуазье и П. Лаплас в присутствии группы своих коллег-ученых «сделали» воду из кислорода и водорода. Воду они получили как продукт сгорания водорода (а то, что в процессе горения участвует кислород – «огненный воздух», стало известно чуть раньше). При этом вес образовавшейся воды равнялся весу водорода и кислорода, участвовавших в реакции горения.

Вот так в один день стало ясно, что вода – не простой элемент, а сложное вещество. Но какой долгий и трудный путь вел к этому знаменательному дню, сколько огорчений, разочарований, ошибок и личных трагедий пережили естествоиспытатели, пока вода наконец-то раскрыла свою природу.

На вопрос: сколько нужно кислорода и водорода для образования воды, дал свой ответ в 1785г. А. Лавуазье и инженер Жан Мёнье. Они выяснили, что для ее образования необходимо соединить 2г водорода и 16г кислорода.

Также хорошо изучено и измерено взаимное расположение молекул ядер атомов водорода и кислорода и расстояние между ними. Расстояния между атомами водорода равно 154 десятимиллиардным долям сантиметра, а угол при вершине, в которой находится атом кислорода, составляет около 105 градусов. Оказалось, что молекула воды нелинейна, т. е. геометрически взаимное расположение зарядов в молекуле можно изобразить как простой тетраэдр.

Все молекулы воды с любым изотопным составом выглядят совершенно одинаково.

Но как же все-таки построены молекулы воды в воде? К сожалению, этот очень важный вопрос изучен еще недостаточно. Строение молекул в жидкой воде очень сложно. Когда лед плавится, его сетчатая структура частично сохраняется в образующейся воде. Молекулы в талой воде состоят из многих простых молекул – из агрегатов, сохраняющих свойства льда. При повышении температуры часть их распадается, их размеры становятся меньше.

Взаимное притяжение ведет к тому, что средний размер сложной молекулы воды в жидкой воде значительно превышает размеры одной молекулы воды. Такое необычайное молекулярное строение воды обусловливает ее необычайные физико-химические свойства.

Еще древнегреческий философ Фалес Милетский, живший две с половиной тысячи лет назад, обратил внимание на то, что вода – единственное вещество, которое в природе встречается в трех состояниях: твердом, жидком, газообразном. Оказывается, своим существованием сразу в трех состояниях вода обязана одному важному обстоятельству – тому, что Земля обращается вокруг Солнца на расстоянии в среднем 149,6 млн. км. Если это расстояние было бы менее 134 млн. км, то вода на планете испарилась бы, а больше 166 млн. км – превратилась бы в лед.

Любая вода, откуда бы она не была взята, - из Северного Ледовитого океана, из глубокой шахты Донбасса, была заключена в снежинке или сверкала ранним утром в капельке росы на цветке, - состоит из одинаково построенных молекул. Однако взаимное расположение отдельных молекул относительно друг друга в жидкой воде, снежинке или в паре из парового котла оказывается неодинаковым.

Пары воды, нагретые до трехсот градусов, при атмосферном давлении подобны обычным газам: в них расстояния между молекулами достаточно велики, так что каждая отдельная молекула может существовать более или менее самостоятельно, не испытывая существенного взаимодействия со стороны своих соседей, за исключением, конечно, тех случаев, когда молекулы в результате беспорядочного теплового движения сталкиваются друг с другом.

В снежинке или кусочке льда молекулы сближены и закреплены в определенных местах кристаллической решетки; движение молекул в большинстве своем ограничиваются колебанием около некоторых средних положений.

Еще раз повторим, что в науке еще нет строгой, твердо установленной теории, касающейся строения жидкостей, в частности воды. Предполагается, что жидкая вода по своему строению представляет нечто среднее между кристаллами льда и паром. Изучение строения воды с помощью инфракрасных и рентгеновых лучей дало возможность считать, что при температурах, близких к точке замерзания, молекулы жидкой воды собираются в небольшие группы и «упаковываются» в пространство приблизительно так, как в кристаллах, а при температурах, близких к точке кипения воды, при нормальном давлении, они располагаются более свободно, беспорядочно.

Вода – настолько необычное вещество, что все его свойства особенны и не подчиняются многим физико-химическим закономерностям, справедливым для других соединений. Проанализируем главные из них.

I. Температура кипения.

Температура кипения воды известна, наверное, каждому – она равна ста градусам выше нуля. Больше того, всем известно, что именно температура кипения воды при нормальном атмосферном давлении и выбрана в качестве одной из опорных точек температурной шкалы, условно обозначенной 100ºС. Однако поставим вопрос иначе: при какой температуре вода должна кипеть? Ведь температуры кипения различных веществ не случайны. Они зависят от положения элементов, входящих в состав их молекул, в периодической системе Менделеева.

Если сравнивать между собой одинаковые по составу химические соединения различных элементов, принадлежащих к одной и той же группе таблицы Менделеева, то легко заметить, что чем меньше атомный номер элемента, чем меньше его атомный вес, тем ниже температура кипения его соединений. Вода по химическому составу может быть названа гидридом кислорода. H2Te, H2Se и H2S – химические аналоги воды. Если проследить за температурами кипения и сопоставить, как изменяются температуры кипения гидридов в других группах периодической системы, то можно довольно точно определить температуру кипения любого гидрида, так же как и любого другого соединения. Сам Менделеев таким способом смог предсказать свойства химических соединений еще не открытых элементов.

Если же определить температуру кипения гидрида кислорода по положению его в периодической таблице, то окажется, что вода должна кипеть при -80ºС. Следовательно, вода кипит приблизительно на сто восемьдесят градусов выше, чем должна кипеть

Температура кипения – это наиболее обычное ее свойство – оказывается необычайным и удивительным.

II. Температура замерзания.

Вторая опорная точка термометра – температура замерзания воды равна нулю градусов. Это знает каждый. Но если опять же поставить вопрос чуть-чуть иначе: какова должна быть температура замерзания воды в соответствии с ее химической структурой, вода снова проявит свои необычайные свойства. Гидрид кислорода на основании его положения в таблице Менделеева должен был бы затвердевать при ста градусах ниже нуля.

III. Теплоемкость.

Климат на планете зависит и от другого свойства воды – очень большой теплоемкости, то есть способности отдавать и накапливать тепло. В одном литре воды можно запасти в 330 раз больше тепла, чем в таком же объеме воздуха. Вода медленнее нагревается, но зато долго сохраняет тепло. Поэтому летним вечером на море вода теплее, чем песок на берегу (теплоемкость песка в 5 раз ниже, чем воды).

А Мировой океан – своеобразная грелка для континентов. Его огромные запасы воды в прямом смысле слова «делают погоду» на Земле. Летом он не дает суше перегреться, а зимой постоянно «поставляет» ей тепло. Поэтому в странах, расположенных вблизи океана, мягкий морской климат, здесь не бывает ни суровой зимы, ни холодных ночей. Перепады температуры в разные сезоны здесь небольшие.

IV. Поверхностное натяжение.

Вода обладает еще одной особенностью – исключительно большим поверхностным натяжением. Молекулы воды на ее поверхности испытывают действие сил межмолекулярного притяжения только с одной стороны, а у воды это взаимодействие аномально велико. Поэтому каждая молекула на ее поверхности втягивается внутрь жидкости. В результате возникает сила, стягивающая поверхность жидкости. У воды она особенно велика: ее поверхностное натяжение составляет 72 мН/м (миллиньютона на метр).

Эта сила и придает мыльному пузырю, падающей капле и любому количеству жидкости в условиях невесомости форму шара. Она поднимает воду в почве, стенки тонких пор и отверстий в ней хорошо смачиваются водой. Вряд ли вообще было бы возможно земледелие, если бы вода не обладала этой исключительной особенностью.

V. Соленость.

Одно из самых важных свойств воды – соленость. В молекуле вещества центры положительных и отрицательных зарядов сильно смещены относительно друг друга. Поэтому вода обладает исключительно высоким, аномальным значением диэлектрической проницаемости. Для воды ع=80, а для воздуха и вакуума ع =1. Это значит, что два любых разноименных заряда в воде взаимно притягиваются друг к другу с силой, в 80 раз меньшей, чем в воздух. Ведь по закону Кулона: f= k*Q1*Q2 er2

Но все же межмолекулярные связи во всех телах, определяющие прочность тела, обусловлены взаимодействием между положительными зарядами атомных ядер и отрицательными электронами. На поверхности тела, погруженного в воду, силы, действующие между молекулами и атомами, ослабевают под влиянием воды почти в сотню раз. Если оставшаяся прочность связи между молекулами становится недостаточной, чтобы противостоять действию теплового движения, молекулы и атомы тела начинают отрываться от его поверхности и переходят в воду. Тело начинает растворяться, распадаясь либо на отдельные молекулы, как сахар в стакане чаю, либо на заряженные частицы – ионы, как поваренная соль.

Именно благодаря аномально высокой диэлектрической проницаемости вода – один из самых сильных растворителей. Она даже способна растворить любую горную породу на земной поверхности. Медленно и неотвратимо она разрушает даже граниты, выщелачивая из них легкорастворимые составные части.

Нет в природе такой прочной породы, которая могла бы сопротивляться всемогущему разрушителю – воде.

I. Общая характеристика льда.

Лед и снег – еще одно из трех агрегатных состояний воды, которое вновь и вновь поражает нас своей необычной красотой. Лед обладает таинственной кристаллической структурой. Его строение и прочность определяются прочностью водородных связей между отдельными молекулами воды. Водородная связь играет огромную роль в строении молекул биополимеров в тканях всех живых организмов. Это, быть может, имеет большое значение для жизни, так как следы структуры льда, по-видимому, долго сохраняются в талой воде.

В последние десятилетия начинает развиваться новая важная область знания – физика льда. Лед прочный, дешевый и хороший строительный материал. Из него строят жилища, склады, он создает природные надежные дороги, переправы, взлетно-посадочные полосы. Лед – причина стихийных бедствий. Он разрушает плотины, сносит мосты, сковывает грунт, вызывает обледенение самолетов и кораблей. Стало совершенно необходимо изучить все свойства льда, определить его механические, электрические, акустические, электромагнитные, радиационные характеристики.

Но сначала разберемся: много ли в наших, земных условиях видов льда? Оказалось, совсем немного – всего один. Это самый прекрасный из всех минералов. Из этого голубовато-зеленого камня сложены на Земле не только горы и колоссальные ледники, им покрыты целые материки.

В своих лабораториях человек сумел открыть еще, по крайней мере, шесть различных, не менее удивительных льдa.

Виды льда Давление Температура плавления

1. Обычный лед. До 208 МПа -22°

2. Лед - III Более 208 МПа -

3. Лед - II До 300 МПа -

4. Лед - V Более 500 МПа Выше 0°

5. Лед - VI 2 ГПа Более 80°

6. Лед - VII 3 ГПа 190°

Таблица №1.

Но существовать они могут только при очень высоких давлениях. Обычный лед сохраняется до давления 208 МПа (мегапаскалей), но при этом давлении он плавится при -22ºС. Если давление выше, чем 208 МПа, возникает плотный лед – лед III. Он тяжелее воды и тонет в ней. При более низкой температуре и большем давлении – до 300 МПа – образуется еще более плотный лед-II. Давление сверх 500 МПа превращает лед в лед-V. Этот лед можно нагреть до 0ºС и он не растает, хотя и находится под огромным давлением. При давлении около 2 ГПа (гигапаскалей) возникает лед-VI. Это буквально горячий лед – он выдерживает, не плавясь, температуру 80ºС. Лед-VII, найденный при давлении 3 ГПа, пожалуй, можно назвать раскаленным льдом. Это самый плотный и тугоплавкий из известных льдов. Он плавится только при 190ºС выше нуля.

II. Свойства льда:

1. Электрические. Лед оказался хорошим полупроводником. Причем его проводимость протонного типа. Установлено, что при замерзании воды на границе между льдом и водой возникает разность электрических потенциалов, достигающая десятков вольт.

2. Механические. В кристаллической решетке льда обнаружена подвижность молекул: они могут не только вращаться, но и перемещаться скачкообразно на сравнительно большие (в молекулярном масштабе) расстояния.

3. Акустические. При изучении процессов образования и поведения льдов в природе было установлено, что полярные льды в напряженном состоянии «кричат». Когда начинается деформация льда, то, как описывает Ф. Нансен, возникает легкий треск и стон, усиливаясь, они переходят через все роды тонов – лед то плачет, то стонет, то грохочет, то ревет, постепенно возрастая, сто «голос» становится подобным звучанию всех труб органа.

4. Тепловые. Гигантское количество тепла, освобождающееся при замерзании воды, задерживает наступление зимних холодов. Тепло, поглощаемое при таянии льдов, замедляет приход весны. С изменением массы льда на планете связаны изменения климата на Земле. Но точный расчет зависимости между погодой и колоссальной энергоемкостью этих глобальный процессов пока еще невозможен – слишком много в них неизвестного.

5. Радиационные. В старых записях сохранились предания о том, что иногда ледяные поля приобретают способность долго светиться в темноте, испуская слабый свет после того, как были освещены солнцем. Интересно было бы знать, верно ли это, когда и почему это явление происходит, чем объясняется. Есть наблюдения, что иногда светится и снег, если его при нескольких градусах мороза внести в темную комнату после освещения ярким солнцем. Рассказывают, что первые градины тоже светятся – они будто бы обладают электролюминесценцией.

III. Общая характеристика снежинок как формы льда.

В кристаллической решетке льда есть плоскости, в которых атомы кислорода расположены так, что образуют правильные шестиугольники. Наверное, с этим связана чаще всего встречающаяся шестилучевая форма изящных звездочек-снежинок.

Изумительная красота и бесконечное разнообразие форм снежинок вдохновили многих ученых на долголетние исследования этой удивительной загадки природы.

Были получены десятки тысяч фотографий снежинок в самых разнообразных условиях: и высоко в облаках, и у земли, и на Крайнем Севере, и на юге – всюду, где только может идти снег.

Кроме огромного множества самых разнообразных форм гексагональной симметрии, кроме шестигранников среди снежинок встречаются и пластиночки, и столбики, и игольчатые формы. Очень много различных форм снежинок обнаружили в природе ученые. Если быть очень точной, то, наверное, придется признать, что совершенно одинаковых снежинок не существует. В бесконечном многообразии каждая из них чем-нибудь да отличается по строению, по форме, по размеру.

Во время очень сильных морозов (при температуре ниже -30ºС) ледяные кристаллики выпадают в виде «алмазной пыли» - в этом случае на поверхности земли образуется слой очень пушистого снега, состоящего из тоненьких ледяных иголочек. Обычно же в процессе своего движения внутри ледяного облака ледяные кристаллики растут за счет непосредственного перехода водяного пара в твердую фазу. Как именно происходит этот рост, зависит от внешних условий, в частности от температуры и влажности воздуха. Характер зависимости ученые в общих чертах выявили, однако объяснить его пока не смогли.

В одних условиях ледяные шестигранники усиленно растут вдоль своей оси, и тогда образуются снежинки вытянутой формы – снежинки-столбики, снежинки-иглы. В других условиях шестигранники растут преимущественно в направлениях, перпендикулярных к их оси, и тогда образуются снежинки в виде шестиугольных пластинок или шестиугольных звездочек. К падающей снежинке может примерзнуть капелька воды – в результате образуются снежинки неправильной формы. Мы видим, таким образом, что распространенное мнение, будто снежинки обязательно имеют вид шестиугольных звездочек, является ошибочным. Формы снежинок оказываются весьма разнообразными. Существуют коллекции микрофотографий, насчитывающие более пяти тысяч снежинок, отличающихся по форме друг от друга. При определенных условиях (требуется, в частности, чтобы не было ветра) падающие снежинки сцепляются друг с другом, образуя огромные снежные хлопья. Хлопья могут быть диаметром до 10 см и даже больше.

I. Общие положения о газообразном состоянии воды. Насыщенный водяной пар.

Единственное газообразное состояние воды – пар. Сколько же существует видов пара? Столько же, сколько и вод. Водяные пары, различные по изотопному составу, обладают хотя и очень близкими, но все же различными свойствами: у них разная плотность, при одной и той же температуре они немного отличаются по упругости в насыщенном состоянии, у них чуть-чуть разные критические давления, разная скорость диффузии.

Попробуем разобраться в так называемом насыщенном водяном паре. Предположим, что мы находимся на берегу какого-нибудь водоема и глядим на поверхность воды. Она представляется нам спокойной. Но в действительности перед нами совершается великое множество микрособытий, недоступных нашему взору. Наиболее быстрые молекулы воды, преодолев притяжение со стороны других молекул, выскакивают из водной массы и образуют пар над водной поверхностью. Мы называем это испарением воды. Молекулы водяного пара сталкиваются друг с другом и с молекулами воздуха, часть молекул пара переходит обратно в жидкость. Это есть конденсация пара. При данной температуре устанавливается своеобразное равновесие (его называют динамическим), когда число молекул воды, покидающих за единицу времени жидкость, в среднем равно числу молекул воды, возвращающихся за то же время обратно. Можно сказать, что процессы испарения и конденсации взаимно компенсируются. Водяной пар, находящийся в этом случае над поверхностью воды, называют насыщенным.

Если температура вдруг повысится, пар станет ненасыщенным: процесс испарения начнет преобладать над процессом конденсации, в результате давление пара начнет расти. Это будет продолжаться до того момента, пока снова не установится динамическое равновесие между испарением и конденсацией, иначе говоря, пока пар снова не станет насыщенным.

Если, напротив, температура вдруг понизится, пар станет перенасыщенным – теперь уже конденсация начнет преобладать над испарением. В результате давление пара будет понижаться до тех пор, пока не будет снова достигнуто динамическое равновесие, т. е. состояние насыщения пара.

Мы видим, таким образом, что давление насыщенного пара зависит от температуры: оно возрастает с увеличением температуры и падает с ее уменьшением. Часто вместо давления пара рассматривается его плотность Q (массу водяных паров в единице объеме). Ясно, что плотность насыщенного пара Qн растет с увеличением температуры и падает с ее уменьшением. На рисунке 8 изображен график зависимости плотности насыщенного пара от температуры.

Из графика видно, что при повышении температуры, например, от 5°С до 40ºС плотность насыщенного пара возрастает более чем в 10 раз.

Заметим, что изображенный график подходит для плоской водной поверхности. Над выпуклой поверхностью плотность (и давление) насыщенного пара при данной температуре больше, чем над плоской поверхностью, а над вогнутой, наоборот, меньше. Дело в том, что в случае с выпуклой поверхностью имеются более благоприятные условия для преобладания испускания над конденсацией, тогда как вогнутая форма поверхности более благоприятствует конденсации.

Теперь мысленно уберем поверхность воды и представим себе некий объем воздуха, содержащий какое-то количество водяных паров. Пусть плотность этих паров равна плотности насыщенного пара при данной температуре (в соответствии с графиком на рисунке 8). Предположим, что температура воздуха в рассматриваемом объеме вдруг уменьшилась. Тогда водяной пар окажется перенасыщенным, начнется конденсация пара и на стенках объема появится влага – выпадет роса. Это будет продолжаться до тех пор, пока плотность водяных паров в рассматриваемом объеме не снизится до значения, равного плотности насыщенного водяного пара при новой температуре.

Туман как одна из форм газообразного состояния воды.

В известном смысле возникновение тумана есть явление выпадения росы. Существенно, однако, что выпадение росы происходит в данном случае не на поверхности земли или воды, не на поверхности листьев или травинок, а в объеме воздуха. При определенных условиях водяные пары, находящиеся в воздухе, частично конденсируются, в результате чего и возникают водяные капельки тумана. Сразу же отметим, что лишь очень небольшая часть массы водяных паров превращается в воду, содержащуюся в капельках тумана. Из графика на рисунке 8 видно, что при обычных температурах (близких к 20ºС) общая масса насыщенных паров в кубометре воздуха составляет 20г. В то же время водность тумана не превышает 0,1 г/м3. Значит, в воду капель тумана конденсируется примерно не более 1% массы водяных паров.

Условия конденсации водяных паров:

❖ Наличие в воздухе перенасыщенных паров, плотность которых должна быть в несколько раз больше плотности насыщенного пара.

Для получения пара можно использовать два способа. Рассмотрим один из них. В случае (Рис. 9) воздух имеет определенную и притом достаточно большую абсолютную влажностьq0; температура воздуха постепенно понижается. По достижении температуры Т=Т1 (точки росы) пар насыщается; при дальнейшем охлаждении он становится перенасыщенным. Следует охладить воздух до такой температуры Т2, чтобы соответствующая ей плотность насыщенного пара qн оказалась в несколько раз меньше абсолютной влажности q0 (см. рисунок). выпадающий в рассматриваемом случае туман называют туманом охлаждения.

Экспериментальное исследование.

Древние волхвы, жрецы и прочие кудесники умели управляться с водой, совершая на глазах людей настоящие чудеса. Например, вызывали проливные дожди или исцеляли «живой» водой. В России не было, пожалуй, ни одной деревни, чтобы в ней не жила бабка, умевшая заговаривать воду и таким образом исцелять болезни.

Доктор Масару Эмото из Японии провел исследования, по результатам которых выходит, что знахари свое дело знают. Молекулы воды воспринимают информацию и впитывают ее, изменяя структуру. Добрые слова способны превратить жидкость в чудодейственный эликсир.

Говорят, что в Крещение любая вода, идущая даже из крана, имеет исцеляющие и очищающие свойства. А уж нырнув в этот день в прорубь, наверняка избавишься от всех хворей. Почему такое происходит? Все просто – память воды о Дне святого Крещения, когда произошло чудо, сохраняется из тысячелетия в тысячелетие. И чудо вновь и вновь совершается именно в этот день, когда миллионы людей просят воду о Спасении. Перекрестился, произнес: «С Богом!» - и нырнул. Вошел в воду старым и дряхлым, чтобы выйти молодым и здоровым, как в сказке.

Если вы не желаете обращаться к знахаркам, то можете просто прочитать над водой молитву «Отче наш» и выпить ее – так исцеляются болезни.

Как на практике происходит воздействие информации на воду, показал доктор Эмото. Японский ученый брал пробы воды из разных мест, замораживал опытные образцы, а потом рассматривал под микроскопом получившиеся кристаллы.

Для начала он сравнил воду из чистого родника и воду из городского водоема. И был поражен, насколько разными получились результаты! Кристаллы из родниковой воды отличались редкой красотой и гармонией, а вот их городским собратьям повезло меньше: у них была разрушена кристаллическая форма, и картина оказалось безобразной, дисгармоничной.

Затем ученый пошел дальше. Он взял пробу воды из озера Фудживара. После этого священник местного храма целый час молился на берегу озера, и затем ученый снова взял пробу из того же места. Изменения оказались просто поразительными: первая проба дала уродливые грязные кляксы, а вторая – чистые ярко-белые шестигранники.

Вдохновившись, доктор Эмото стал придумывать все новые эксперименты. Он давал воде «слушать» различную музыку, он приклеивал к емкостям с водой бумажки с разными словами, он ставил канистры в помещение с детьми и в помещение с агрессивно настроенными взрослыми (токийская биржа) И всякий раз сравнивал кристаллы воды «до» и «после».

Сомнений быть не могло. Вода понимает информацию, которую ей сообщают, и в зависимости от этого меняет свою структуру!

Но есть у современных ученых и другие мнения (см. Приложение, таблица №1). Как видите, эти мнения очень разнятся, причем кардинально, ни одна из сторон не может согласиться с мнением противоположной. Именно этот конфликт и вызвал во мне неподдельный интерес. К сожалению, фактов слишком много, и, вроде как, все они очень убедительны и точны. Единственный шанс разрешить мое внутреннее противоречие – самой провести этот, скажем, очень даже занимательный эксперимент.

Для начала, хотя бы в общих чертах попробуем установить порядок действий проведения эксперимента:

1. Выделение физического явления, установление цели исследования, методов его проведения.

2. Оборудование, экспериментальная установка.

3. Установление предполагаемого результата (гипотезы).

4. Описание опыта (ход работы)

5. Установление результатов опыта, вывод по работе, продолжение исследования.

Итак, начнем

Эксперимент на установление ложности или истинности предположения наличия «памяти» у воды.

Исследуемое явление: «память» воды.

Цель исследования: определение ложности или истинности гипотезы (наличие «памяти» у воды).

Методы исследования: экспериментальное наблюдение.

Оборудование: рефрижератор, 2 емкости (стакан) одинакового объема.

Предполагаемый результат: образование кристаллов льда определенной формы, в зависимости от типа воздействия на вещество.

Описание опыта.

Заполняем емкости водой из одного источника комнатной температуры. Один стакан оставляем на время без внимания. Второму даем прослушивать «тяжелый рок», фразы отрицательного характера. Первому же – классическую музыку вместе с такими фразами как «я тебя люблю», «спасибо». Помещаем оба стакана в холодильник (температура ≈ -18ºС). Через два часа вынимаем и ставим на свет.

Результат опыта.

Вода в емкости, которой говорили плохие слова, плохо промерзла изнутри, притом кристаллы чем-то напоминали зубы аллигатора. Вода, с которой были проведены противоположные действия, промерзла полностью, образовав кристаллы, похожие на вихрь.

Вывод по работе.

К сожалению, несмотря на то, что меня удивили кристаллы «отрицательной» воды, нельзя однозначно сказать, что «память» у вещества действительно существует. Как говорится, «тот, кто хочет увидеть, всегда увидит». Но и отрицать это свойство тоже никак нельзя, во всяком случае, без веского опровержения.

В данной работе техническими объектами можно считать холодильник и стеклянные емкости. Объекты природы: вода.

Исследование процесса плавления льда в воде и в воздухе.

Исследуемое явление: плавление льда в различных средах.

Цель исследования: исследовать процесс плавления льда в воде и воздухе.

Методы исследования: экспериментальный (наблюдение, эксперимент, измерение).

Оборудование: стакан, сосулька, термометр.

Предполагаемый результат: плавление льда в воздухе будет происходить быстрее, чем в воде, то есть верхняя часть сосульки растает раньше, чем нижняя (у дна стакана).

Описание опыта.

Сосульку поместим вертикально в пустой стакан. Через 10 минут в стакане появилось небольшое количество воды, т. к. часть сосульки расплавилась. Начальная температура воды 0ºС. Уровень воды в стакане постепенно увеличивается, когда воды станет много, измерим ее температуру термометром. Верхний слой воды имеет температуру 0ºС, у дна температура воды = 2ºС.

Результат опыта.

Сосулька тает по всей поверхности, но неравномерно. Верхняя часть сосульки, которая находилась в воздухе, растаяла быстрее. Чем та часть, которая находилась в воде. Если внимательно рассмотреть нижнюю часть сосульки, находящуюся в воде, то можно заметить, что сильнее подтаяла она у самого дна. Медленнее процесс плавления льда происходит на границе воздух-вода, т. к. там температура = 0ºС.

Сосулька постепенно принимает такую форму, что верхние и нижние части становятся меньше, чем центральная (ближе к границе сред).

Вывод по работе: наиболее утолщенная часть сосульки у самой поверхности воды. Температура воды на дне стакана выше 0ºС, т. к. тепло поступает от дна, стенок стакана, от воздуха.

Продолжение исследования: сосулька полностью растает, лед превратится в воду.

В данной работе техническими объектами можно считать стакан, термометр.

Объекты природы: сосулька, вода.

Исследовательская работа

«Место воды в нашей жизни».

Следующим этапом моей работы будет проведение исследования на тему «Значение воды в нашей жизни» путем проведения анкетирования среди учащихся школы и анализа полученных данных.

Вопросы, составленные для анкетирования:

1. Используете ли Вы большие водные ресурсы каждый день?

2. Как Вы оценивает качество воды в нашем городе?

3. Пьете ли Вы некипяченую воду?

4. Верите ли вы в лечебные свойства Святой воды?

5. Как Вы думаете, улучшилось или ухудшилось городское качество воды?

6. Какие способы Вы используете для улучшения качества воды?

Анализ анкетирования:

Данные школьного опроса показали:

➢ 100% учеников используют большие водные ресурсы каждодневно.

➢ Большинство (45%) опрошенных оценивают качество воды в городе как «плохое», оценку «среднее качество» поставили 20 % учеников. Основные жалобы – большое содержание хлорки в воде.

➢ На вопрос «Пьете ли Вы некипяченую воду?» 53 процента опрошенных ответили положительно. Но с оговоркой, что не часто.

➢ 89% опрошенных школьников верят в лечебные свойства Святой воды, тогда как 11% в этом сомневаются.

➢ Подавляющее большинство (85%) школьников утверждают, что качество воды заметно ухудшилось, 10% не знают, что на это ответить.

➢ Выяснилось, что 53 % опрошенных используют для очищения во

➢ Выяснилось, что 53 % опрошенных используют для очищения воды фильтры. В анкетах были указаны фильтры следующих марок: «Аквафор», «Барьер». Остальные ученики не используют никаких способов для очищения воды, кроме кипячения.

Как мы видим, результаты опроса противоречивы. Опасения вызывает употребление некипяченой воды большинством опрошенных детей. Конечно, в малых количествах некипяченая вода даже может быть полезна, но только в том случае, если она не имеет вредных примесей. А в Котельниче, как мы знаем, хлорки не избежать. Да и по всей России, тоже!

Исследовательская работа

«Сколько же воды мы пьем?».

В России, которая не испытывает проблем с водными ресурсами, эта проблема может показаться надуманной. Но для многих стран и для планеты в целом проблема пресной и питьевой воды является одной из важнейших. Эксперты не исключают, что через 50 лет из-за воды на Земле, в особенности в Африке, будут бушевать войны, как они разгораются из-за нефти. Уже сейчас треть населения планеты проживает в условиях острого дефицита воды. Россияне сегодня в среднем тратят по 380 литров воды в сутки на человека. Это огромная цифра. Для сравнения, в Германии на каждого немца приходится всего по 120 литров воды в сутки.

Исследование.

❖ Исследуемое явление: количественная доля потребления воды в сутки на ребенка нашей школы, среднее значение данных.

❖ Цель исследования: сравнение показателей, полученных в целом по России и показатель опроса учеников школы № 5 города Котельнича.

❖ Методы исследования: анкетирование с элементами интервьюирования.

❖ Оборудование: листы с анкетами, программы для обработки графических данных.

❖ Предполагаемый результат: показатели в городе Котельниче будут во много раз меньше показателей общероссийских

❖ Описание исследования.

После проведения опроса среди учащихся школы передо мной была поставлена задача анализирования и преобразования данных. Нужно учесть, что дети не учитывали в своих ответах, сколько воды тратиться на стирку и мытье посуды каждодневно. Только на свои нужды.

❖ Результат исследования.

Выяснилось, что в среднем Котельничский ученик тратит в сутки примерно 20 литров воды. Класс в 20 человек потребляет в сутки примерно 214 литров воды. Графическое представление данных вы можете увидеть в Приложении, график №6.

❖ Вывод по работе.

Показатели потребления воды в городе Котельнич в 16 раз!!! меньше показателей общероссийских. Следовательно, это прекрасно! Правда погрешность в полученных данных может быть весьма велика.

❖ В данной работе техническими объектами можно считать: анкетные листки, программы «Microsoft Excel» и «Microsoft Word».

❖ Объекты природы: вода.

Исследовательская работа

«Изучение процесса диффузии в воде».

Исследование.

❖ Исследуемое явление: процесс диффузии в жидкости (вода).

❖ Цель исследования: изучение одного из основополагающих свойств воды.

❖ Методы исследования: эксперимент, наблюдение.

❖ Оборудование: стакан (200 мл), чай, сахар, вода (кипяченая), вода (холодная), секундомер.

❖ Предполагаемый результат: Процесс диффузии в горячей воде будет происходить быстрее, чем в холодной, существует определенная зависимость скорости процесса диффузии от наличия в воде примесей.

❖ Описание исследования и его результат.

Я взяла стакан с горячей и холодной водой, добавила в каждый из них чайную ложку чая. Включила секундомер. Вода в стакане с горячей водой окрасилась полностью через 35 секунд от начала отсчета, тогда как процесс диффузии в стакане с холодной водой вовсе не наблюдался (2 минуты – далее эксперимент не проводился).

❖ Вывод по работе.

Выдвинутая мной гипотеза оказалась правдой, хотя эксперимент и носит бытовой характер.

❖ В данной работе техническими объектами можно считать: стакан, секундомер.

❖ Объекты природы: вода, чай, сахар.

1. Работа над данным проектом проведена в соответствии с планом:

1. Проведен анализ физических, химических и биологических свойств воды.

2. Экспериментальные исследования заложены и анализированы.

3. Систематизированы полученные данные.

2. Получены начальные навыки работы в исследовательском проекте.

3. Возможности исследования воды не ограничены, работа может быть продолжена, причем по любой из данных тем.

Нельзя сказать, что все, задуманное в начале, удалось воплотить в жизнь. Но, что могу сказать точно, это то, что я нисколько не жалею о выборе данной темы. Надеюсь и в дальнейшем продолжать работу в этом направлении.

Куда исчезает вода из луж? Почему из носика кипящего чайника вырывается белый пар? Почему в печи трещат дрова? На этом уроке мы ответим на эти и многие другие вопросы. Узнаем, как провести опыты по обнаружению водяного пара и скорости испарения. Выучим основные свойства воды в газообразном состоянии.

Тема: Неживая природа

Урок: Свойства воды в газообразном состоянии

Вода состоит из молекул, которые находятся в непрерывном движении.

Рис. 1. Молекулы воды обычной температуры

Те из них, что оказываются близко к поверхности, оказываются в воздухе и перемешиваются с его частицами, превращаясь в водяной пар. Частицы воздуха и водяного пара так малы, что их невозможно увидеть невооруженным глазом. Водяной пар - это прозрачный бесцветный газ, невидимый, как и воздух.

Рис. 2. Образование водяного пара при кипении ()

Испарение - переход воды из жидкого состояния в газообразное.

Рис. 3. Испарение воды с поверхности водоема ()

Лед тоже испаряется, но значительно медленнее, чем вода в жидком состоянии. Например, если зимой вывесить мокрое белье на улицу, сначала оно покроется ледяной коркой, а потом высохнет.

Рис. 4. Сушка мокрого белья зимой ()

В каком бы состоянии вода не была, она постоянно испаряется с поверхности Земли.

Человек использует знания об испарении воды. Просушивают собранное зерно, заготовленные дрова, оштукатуренные стены, вымытую посуду, выстиранное белье.

Рис. 7. Сушка оштукатуренных стен ()

Мокрые волосы сушат электрическим феном.

Интенсивность испарения зависит от температуры воды: чем выше температура, тем выше скорость движения молекул воды, а значит и испарения. Это доказывает простой опыт: если в 2 емкости налить одинаковое количество воды, а затем одну поставить в холодное место, а другую - в теплое, через некоторое время станет ясно, что вода в холодном месте испаряется медленнее, чем в теплом.

Мокрая дорога летом высохнет намного быстрее, чем осенью.

Скошенная трава в солнечный день высохнет быстрее, чем в пасмурный.

Знание этого свойства помогает людям. Например, если подмокла старинная книга, её оставляют в специальной морозильной камере, чтобы высыхание шло медленно и страницы книги не повредились.

Испарение происходит в месте соприкосновения поверхности воды с воздухом, соответственно, чем больше площадь соприкосновения, тем быстрее происходит испарение. Доказать это можно с помощью несложного опыта: нужно налить одинаковое количество воды в 3 емкости с разной площадью соприкосновения налитой воды с воздухом (например, бутылка с узким горлышком, стеклянная банка и широкая тарелка). Через некоторое время мы увидим, что вода из тарелки испаряется быстрее всего, потому что площадь соприкосновения воды с воздухом наибольшая. Из банки немного медленнее, потому что площадь соприкосновения меньше. А из бутылки медленнее всего, потому что площадь соприкосновения воды с воздухом наименьшая.

Рис. 13. Опыт по испарению воды из емкостей с различной площадью соприкосновения воды с воздухом ()

Поэтому фрукты, предназначенные для сушки, разрезают на тонкие ломтики - чтобы увеличить поверхность соприкосновения с воздухом и увеличить скорость испарения.

Под воздействием ветра испарение идет быстрее, потому что молекулы воды активнее соединяются с молекулами воздуха. В ветреную погоду влажные поверхности высыхают быстрее, если держать руки под сушилкой, они высохнут быстрее.

Рис. 15. Сушка рук под воздействием потока теплого воздуха ()

Наиболее активно испарение идет при нагревании. При 100г вода кипит и превращается в водяной пар. Молекулы водяного пара под воздействием высокой температуры двигаются очень быстро, ему необходим большой объем, поэтому у кипящего чайника «подпрыгивает» крышка.

Знание этого свойства водяного пара позволило людям сконструировать паровые двигатели.

Рис. 17. Машина с паровым двигателем ()

Часто, когда печется яблоко, его кожура лопается - это яблочный сок, превращаясь в пар, разрывает кожуру.

Или можно услышать треск дров в печи - под воздействием высокой температуры вода в дровах превращается в водяной пар и разрывает древесину.

Как было сказано, водяной пар - невидим. Так почему же мы видим пар, когда кипит чайник? В холодном воздухе разогретый водяной пар конденсируется - превращается в мельчайшие капельки воды, которые мы видим как белый пар. А невидимый водяной пар находится возле носика чайника на границе белого облачка пара.

Если поместить у носика кипящего чайника холодный металлический предмет, то очень скоро на нем появятся капельки осевшей воды. Этот опыт доказывает наличие водяного пара у носика чайника.

Рис. 21. Опыт по конденсации водяного пара у носика чайника ()

  1. Вахрушев А.А., Данилов Д.Д. Окружающий мир 3. М.: Баллас.
  2. Дмитриева Н.Я., Казаков А.Н. Окружающий мир 3. М.: ИД «Федоров».
  3. Плешаков А.А.Окружающий мир 3. М.: Просвещение.
  1. Сайт учителя начальных классов ().
  2. Школа цифрового века ().
  1. Составьте короткий тест (4 вопроса с тремя вариантами ответа) на тему «Вода в газообразном состоянии».
  2. Проведите небольшой опыт: в одинаковые емкость налейте по полстакана холодной воды, поставьте одну емкость в холодное места, а другую теплое. Каждые 12 часов в течение 3 дней замеряйте уровень воды в каждой емкости. Опишите, что будет происходить, объясните, почему. Сравните результаты измерений.
  3. *Напишите сказку на тему «Облака».

Вода на Земле может существовать в трёх основных состояниях - жидком, газообразном и твёрдом и приобретать различные формы, которые могут одновременно соседствовать друг с другом. Водяной пар и облака в небе, морская вода и айсберги, горные ледники и горные реки, водоносные слои в земле. Вода способна растворять в себе много веществ, приобретая тот или иной вкус. Из-за важности воды, «как источника жизни», её нередко подразделяют на типы по различным принципам.

Итак, вода бывает морская, пресная, речная, озерная, колодезная, водопроводная, сырая, кипяченая, родниковая, дождевая, талая, болотная, минеральная, горячая, теплая, холодная, приятная, бодрящая, газированная (с сиропом или без). Наконец, просто вкусная или невкусная!

Художник воду описывает такой, какой ее видит, в красках: голубая вода горных озер, зеленоватая вода прудов и болот, свинцово-серые волны моря… Поэт и вовсе сравнивает воду с живым существом, обладающим характером. «Вода благоволила литься» - эти слова принадлежат поэту Леониду Мартынову. Сколько в одной строчке восхищения водой!

Как с научной и практической точки зрения можно классифицировать природную воду?

Прежде всего, по содержанию солей. Cуществует морская вода (соленая) и вода пресная. Соленость определяется в граммах солей на литр воды и составляет для пресной воды до 1 г/л, для воды солоноватой - от 1 до 24,7 г/л и для соленой - более 24,7 г/л. Но и морская вода по степени солености бывает разная. Вода Черного моря гораздо солонее воды моря Балтийского. А самой соленой считается вода Мертвого моря. Соленость воды зависит от количества рек, впадающих в морской бассейн, от степени его соединения с Мировым океаном и от климата данной местности (режима испарения). Вода некоторых соленых озер, в том числе находящихся на юге России, а также на территории бывшего СССР (Казахстан, Туркмения), достигает такой концентрации, что больше напоминает соляной раствор.

Вода отличается также по нахождению в Природе и происхождению. Воды бывают поверхностные (реки, озера, моря и пр.) и подземные, в том числе грунтовые, артезианские.

Воду различают и по степени очистки: природная вода, водопроводная, кипяченая, дистиллированная (полученная из охлажденных паров).

Кроме того, вода может быть даже ископаемой (заключенная внутри горных пород и минералов, образовавшихся миллионы лет назад). Она и сама может быть полезным ископаемым! Об этом вам скажут геологи. А вот химики обязательно добавят, что кроме обычной, легкой, воды в Природе существует и тяжелая вода (тритиевая и дейтериевая), которую называют радиоактивной.

Известно, что в природе вода может находиться в трех различных состояниях, таких как: газообразное, жидкое или твердое.

Облака, снег и дождь представляют собой различные состояния воды. Облако состоит из множества капелек воды или кристалликов льда, снежинка-это мельчайшие кристаллики льда, а дождь-это всего лишь жидкая вода.

Вода, находящаяся в газообразном состоянии, называется водяным паром. Когда говорят о количестве влажности в воздухе, обычно подразумевают количество водяных паров. Если воздух описывается как «влажный», это означает, что в воздухе содержится большое количество водяных паров.

Лед – твердое состояние воды. Толстый слой льда имеет голубоватый цвет, что связано с особенностями преломления им света. Сжимаемость льда очень низка. Лед при нормальном давлении существует только при температуре 0° С или ниже и обладает меньшей плотностью, чем холодная вода. Именно поэтому айсберги плавают в воде. При этом, поскольку отношение плотностей льда и воды при 0° С постоянно, лед всегда выступает из воды на определенную часть, а именно на 1/5 своего объема.

Для того, чтобы доказать, что вода переходит из одного состояния в другое я провёл несколько экспериментов.

Эксперимент 1.

Переход воды из жидкого состояния в твердое. (Приложение 1)

Эксперимент 2.

Переход воды из жидкого состояния в газообразное, из газообразного в жидкое и из твердого в жидкое. (Приложение 1).

Переход вещества из газообразного состояния в жидкое или твёрдое вследствие его охлаждения или сжатия называется конденсацией.

Также происходит и в природе. С поверхности океанов, морей, рек и суши вода превращается в пар и поднимается в вверх. Там он охлаждается и превращается в капельки воды, из которых образуются облака.

Из облаков вода выпадает на землю и пополняет реки, а реки несут её в океан.

⇐ Предыдущая12345Следующая ⇒

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:

Состояние воды в природе

Вода — одно из самых распространенных на Земле соединений. Молекулы воды обнаружены в межзвездном пространстве. Вода входит в состав комет, большинства планет Солнечной системы и их спутников. Количество воды на поверхности земли оценивается в 1,39 ?

1018т. Общий объем воды на Земле составляет около 1 500 000 000 км 3 . Если эту воду равномерно распределить по поверхности Земли, то толщина ее слоя составила бы почти 4 км.

Вода входит в состав многих минералов и горных пород, присутствует в почве и во всех организмах. Так, например, тело взрослого человека на 65% состоит из воды. Вода входит в состав всех его органов и тканей: в сердце, легких, почках её около 80%, в крови — 83%, в костях — 30%, в зубной эмали — 0,3%, в биологических жидкостях организма (слюне, желудочном соке, моче и т.д.) — 95-99%.

Тело рыб содержит 80% воды, водорослей — 90%. Подсчитано, что содержание воды в тканях живых организмов примерно в шесть раз превышает ее количество во всех реках земного шара.

Известно, что в природе вода может находиться в трех различных состояниях, таких как: твердое, жидкое или газообразное.

Облака, снег и дождь представляют собой различные состояния воды. Облако состоит из множества капелек воды или кристалликов льда, снежинка — это совокупность мельчайших кристалликов льда, а дождь — всего лишь жидкая вода.

Вода, находящаяся в газообразном состоянии, называется водяным паром. Когда говорят о количестве влажности в воздухе, обычно подразумевают количество водяных паров. Если воздух описывается как "влажный", это означает, что в воздухе содержится большое количество водяных паров.

Лед — твердое состояние воды. Толстый слой льда имеет голубоватый цвет, что связано с особенностями преломления им света. Сжимаемость льда очень низка. Лед при нормальном давлении существует только при температуре 0° С или ниже и обладает меньшей плотностью, чем холодная вода. Именно поэтому айсберги плавают в воде. При этом, поскольку отношение плотностей льда и воды при 0° С постоянно, лед всегда выступает из воды на определенную часть, а именно на 1/5 своего объема.

Лишь недавно, в конце второго тысячелетия, было обнаружено еще одно, четвертое состояние воды - информационное. В поисках ответов на многочисленные вопросы, хоть сколь-нибудь приблизившие бы к пониманию непредсказуемого поведения воды, ученым вдруг стало остро очевидно: вода, словно живое существо, обладает памятью. Она воспринимает и запоминает любое воздействие, как будто понимая все, что происходит в пространстве.

В ходе опытов со структурой жидкости удалось выяснить, что памятью воды можно управлять. Суть сводится к следующему: молекулы того или иного вещества, растворяясь в воде, как бы пронумеровывают и программируют расположение ее структурных элементов. Если записать объемное распределение взаимных ориентацией граней вокруг молекулы вещества, то фактически будет произведена запись вполне определенного состояния воды, отвечающего за то или иное ее свойство (например, горький или сладкий вкус и т. д.). Нетрудно представить, какие громадные возможности направленного задания желаемых свойств воды это открывает.

Сверхкритическую воду систематически исследуют с начала прошлого века. Однако сегодня эти работы привлекательны не только с теоретической точки зрения. Есть надежда, что самый распространённый, дешёвый, безопасный и экологически чистый растворитель займет свою уникальную нишу в химической промышленности.

Сверхкритические состояния первым начал изучать Каньяр де ля Тур в 1822 году. Если любую кипящую жидкость (когда существует равновесие между жидкостью и паром) продолжать нагревать и увеличивать давление, то в какой-то момент плотности жидкости и пара становятся одинаковыми, а граница раздела между этими фазами исчезает. В этой критической точке вещество переходит в промежуточное состояние - становится не газом и не жидкостью. При температуре выше критической точки уже двух фаз не получится, хотя если этот однородный флюид сжимать, то его плотность будет меняться от газоподобного к жидкоподобному. При меньших температурах вода находится в докритическом состоянии, а при изменении давления её плотность меняется скачком: жидкость переходит в пар. Выше - в сверхкритическом, вещество однородно, а плотность меняется непрерывно.

Уже накоплено много экспериментальных данных по сверхкритическому состоянию воды.

Все эти данные подтверждают, что при повышении температуры и давления меняются: её диэлектрическая проницаемость, электропроводность, ионное произведение, структура водородных связей.

Из всех жидкостей вода, наверное, претерпевает самые сильные изменения, переходя в сверхкритическое состояние. Если при нормальном давлении и температуре вода - полярный растворитель, то в сверхкритической воде растворяются почти все органические вещества. Растворимость неорганических веществ также меняется. Даже небольшое отклонение температуры и давления вблизи критической точки изменяет все физико-химические характеристики воды, поэтому при малейших флуктуациях давления и температуры в такой воде могут полностью растворяться или, наоборот, осаждаться оксиды и соли. Собственно, на этом основана технология гидротермального выращивания кристаллов, которой больше полувека.

В сверхкритическом состоянии вода (скH2O) неограниченно смешивается с кислородом, водородом и углеводородами, облегчая их взаимодействие между собой - в ней очень быстро протекают все реакции окисления. Одно из особенно интересных применений такой воды - эффективное уничтожение боевых отравляющих веществ. В смеси с другими веществами скH2O можно использовать не только для окисления, но и в реакциях гидролиза, гидратации, образования и расщепления углерод-углеродных связей, гидрирования и других.

До- и сверхкритическая вода - это нетоксичный растворитель, свойствами которого можно управлять, подстраивая их под конкретную каталитическую реакцию. В процессах со сверхкритическим флюидом нет проблем с диффузией на границе газ-жидкость (ведь это не газ и не жидкость), а значит, легче регулировать скорость такой реакции.

Кроме перечисленных состояний воды открыто новое, в котором она не замерзает даже при температуре, близкой к абсолютному нулю, а также обладает иными необычными свойствами.

Группа американских ученых из Аргоннской национальной лаборатории под руководством Александра Колесникова открыла новое состояние воды, получившее название «нанотрубочная вода» (nanotube water). Несмотря на то что в новом состоянии молекула воды также состоит из атома кислорода и двух атомов водорода, она не замерзает даже при температуре 8 градусов Кельвина.

Поведение воды в сверхмалых объемах, стенки которых не смачиваются водой, очень интересует специалистов в различных областях – от геологов до разработчиков новых материалов. Американские ученые решили исследовать свойства воды, помещенной в «сосуд» из углеродной нанотрубки. «Я с удивлением узнал, — рассказал г-н Колесников, — что никто до сих пор не пытался исследовать поведение воды в нанотрубках. Имеется большое количество расчетов, однако они усложняются еще и тем фактом, что вода крайне сложна для моделирования – в отличие от экспериментального исследования».

Для изучения поведения воды в таких «экстремальных» условиях ученые наполнили водой углеродные нанотрубки размером 1,4 нм в поперечнике и длиной 10 тыс. нм. Для этого они подвергали их воздействию водяного пара на протяжении нескольких часов, после чего изучили структуру атомов внутри нанотрубок с помощью потока нейтронов. «В столь тесном одноразмерном сосуде мы ожидали увидеть что-то необычное, но не настолько, — сказал г-н Колесников.

— Обнаружилось нечто поистине странное».

Оказалось, что вода в нанотрубках находится в новом состоянии, не похожем ни на жидкое, ни на газообразное агрегатные состояния. Выяснилось, в частности, что среднее количество водородных связей, связывающих молекулу воды с соседними (так называемое координатное число) сократилось с 3,8 до 1,86. Вследствие этого повысилась подвижность молекул. «Новая вода» не замерзала даже при температуре, всего на восемь градусов отличающейся от абсолютного нуля.

Ученые продолжают оказавшиеся столь плодотворными исследования. На очереди разработка более корректной математической модели воды с использованием методов параллельных вычислений, изучение свойств воды в нанотрубках меньшего диаметра – например, сравнимого с размером протеинов клеточной мембраны, а также изучение термодинамических свойств "нанотрубочной воды".



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Про деток, от рождения до школы