Про деток, от рождения до школы

Л Е К Ц И Я

по дисциплине "Электроника и пожарная автоматика" для курсантов и студентов

по специальности 030502.65 – «Судебная экспертиза»

по теме № 1. «Полупроводниковые, электронные, ионные приборы»

Тема лекции «Индикаторные и фотоэлектрические приборы».

Индикаторные приборы

Электрический разряд в газах.

Газоразрядными (ионными) называют электровакуумные приборы с электрическим разрядом в газе или парах. Газ в таких приборах находится под пониженным давлением. Электрический разряд в газе (в паре) это совокупность явлений, сопровождающих прохождение через него электрического тока. При таком разряде протекает несколько процессов.

Возбуждение атомов.

Под ударом электрона один из электронов атома газа переходит на более удаленную орбиту (на более высокий энергетический уровень). Такое возбужденное состояние атома длится 10 -7 – 10 -8 секунды, после чего электрон возвращается на нормальную орбиту, отдавая при этом в виде излучения полученную при ударе энергию. Излучение сопровождается свечением газа, если излучаемые лучи относятся к видимой части электромагнитного спектра. Для того, чтобы произошло возбуждение атома, ударяющий электрон должен иметь определенную энергию, так называемую энергию возбуждения.

Ионизация.

Ионизация атомов (или молекул) газа происходит при энергии ударяющего электрона большей, чем энергия возбуждения. В результате ионизации из атома выбивается электрон. Следовательно, в пространстве будут два свободных электрона, а сам атом превратится в положительный ион. Если эти два электрона при движении в ускоряющем поле наберут достаточную энергию, каждый из них может ионизировать новый атом. Свободных электронов будет уже четыре, а ионов – три. Происходит лавинообразное нарастание числа свободных электронов и ионов.

Возможна ступенчатая ионизация. От удара одного электрона атом переходит в возбужденное состояние и, не успев вернуться к нормальному состоянию, ионизируется от удара другого электрона. Увеличение в газе числа заряженных частиц за счет ионизации (свободных электронов и ионов) называют электризацией газа .

Рекомбинация.

Наряду с ионизацией в газе происходит и обратный процесс нейтрализации противоположных по знаку зарядов. Положительные ионы и электроны совершают в газе хаотическое движение, и приближаясь друг к другу могут соединиться, образуя нейтральный атом. Этому способствует взаимное притяжение разноименно заряженных частиц. Восстановление нейтральных атомов называют рекомбинацией . Так как на ионизацию затрачивается энергия, положительный ион и электрон в сумме имеют энергию большую, чем нейтральный атом. Поэтому рекомбинация сопровождается излучением энергии. Обычно при этом наблюдается свечение газа .

При возникновении электрического разряда в газе перевес имеет ионизация, при уменьшении его интенсивности – рекомбинация. При постоянной интенсивности электрического разряда в газе наблюдается установившийся режим, при котором число свободных электронов (и положительных ионов), возникающих за единицу времени вследствие ионизации в среднем равно числу нейтральных атомов, получающихся вследствие рекомбинации. С прекращением разряда ионизация исчезает и, вследствие рекомбинации, восстанавливается нейтральное состояние газа.

Для рекомбинации требуется некоторый отрезок времени, поэтому деионизация совершается за 10 -5 – 10 -3 секунд. Таким образом, по сравнению с электронными приборами, газоразрядные приборы значительно более инерционны.

Виды электрических разрядов в газах.

Различают самостоятельный и несамостоятельный разряды в газе. Самостоятельный разряд поддерживается под действием только электрического напряжения. Несамостоятельный разряд может существовать при условии, что помимо напряжения действуют еще какие-либо дополнительные факторы. Ими могут быть излучение света, радиоактивное излучение, термоэлектронная эмиссия накаленного электрода и т.д.

Несамостоятельным является темный или тихий разряд . Свечение газа обычно незаметно. В газоразрядных приборах он практически не используется.

К самостоятельным относится тлеющий разряд. Для него характерно свечение газа, напоминающее свечение тлеющего угля. Разряд поддерживается за счет электронной эмиссии катода под ударами ионов. К приборам тлеющего разряда относятся стабилитроны (газоразрядные стабилизаторы напряжения), газосветные лампы, тиратроны тлеющего разряда, знаковые индикаторные лампы и декатроны (газоразрядные счетные приборы).

Дуговой разряд может быть как несамостоятельным, так и самостоятельным. Дуговой разряд получается при плотности тока значительно большей, чем в тлеющем разряде и сопровождается интенсивным свечением газа. К приборам несамостоятельного дугового разряда относятся газотроны и тиратроны с накаленным катодом. К приборам самостоятельного дугового разряда относятся ртутные вентили (экситроны) и игнитроны, имеющие жидкий ртутный катод, а также газовые разрядники.

Искровой разряд имеет сходство с дуговым разрядом. Он представляет собой кратковременный импульсный электрический разряд. Используется в разрядниках, служащих для кратковременного замыкания тех или иных цепей.

Высокочастотный разряд может возникать в газе под действием переменного электромагнитного поля даже при отсутствии токопроводящих электродов.

Коронный разряд является самостоятельным и используется в газоразрядных приборах для стабилизации напряжения. Наблюдается в случаях, когда один из электродов имеет очень малый радиус.

Явление статического электричества наблюдается обычно в диэлектриках. Если в диэлектрике химическая связь ионная, то из-за несовершенства структуры вещества количество положительных и отрицательных ионов в единице объема вещества не одинаково. Это означает, что практически любое диэлектрическое тело с ионной связью изначально обладает электрическим зарядом, вокруг которого существует электростатическое поле.

В реальных условиях этот заряд обычно компенсируется зарядами из окружающей среды, которые осаждаются на поверхности диэлектрика. В результате, электростатическое поле вокруг такого тела отсутствует.

Если в диэлектрике химическая связь ковалентная, то диэлектрик может обладать ненулевым электрическим дипольным моментом и, вследствие этого, создает вокруг себя электростатическое поле. В реальных условиях из окружающей среды на поверхности такого диэлектрика осаждаются компенсирующие заряды, таким образом, что электрическое поле вокруг такого тела становится равным нулю.

Механическое взаимодействие тел может приводить к снятию компенсирующих зарядов с соответствующих поверхностей и появлению в окружающем пространстве электрического поля, которое может наводить помехи на входах электрических устройств. Это электрическое поле в некоторых случаях может привести к пробою диэлектрика (например, воздуха).

Разряды, связанные с этим пробоем, формируют в пространстве электромагнитные импульсы, которые также передают помехи.

Полное внутреннее сопротивление источника от 1 до 30 кОм.

Суммарная индуктивность пути разряда 0,3 – 1,5 мкГн.

Емкость составляет от 100 до 300 пФ.

Максимальное напряжение до 15 кВ.

Максимальный ток импульса разряда до 30 А.

Скорость нарастания тока от 2 до 35 А/нс.

Примерная форма импульса тока при разряде электричества:

Примерная форма импульса тока Спектральная характеристика:

при разряде электричества:

Классификация источников помех

Различают функциональные источники и нефункциональные.

Функциональные источники – это радио- и телепередатчики, которые распространяют электромагнитные волны в окружающую среду в целях передачи информации. К этой группе относятся все устройства, которые излучают электромагнитные волны не для целей коммуникации, но для выполнения своей технической функции, например, генератор высокой частоты для промышленного или медицинского применения, микроволновые устройства радиоуправления.

К нефункциональным источникам относятся автомобильные устройства зажигания, люминесцентные лампы, сварочное оборудование, релейные и защитные катушки, выпрямители тока, контактные и бесконтактные переключатели, проводные линии и компоненты электрических узлов, переговорные устройства, атмосферные разряды, коронные разряды в линиях, коммутационные процессы, разряды статического электричества, быстро меняющиеся токи и напряжения в лабораториях техники высоких напряжений.

Различают также широкополосные и узкополосные источники помех.

Широкополосные – это помехи, обладающие широким частотным спектром, а узкополосные – узким.

Век, в котором мы живем, можно назвать временем электричества. Работа компьютеров, телевизоров, автомобилей, спутников, приборов искусственного освещения - это лишь малая часть примеров, где оно используется. Одним из интересных и важных для человека процессов является электрический разряд. Рассмотрим подробнее, что он собой представляет.

Краткая история изучения электричества

Когда человек познакомился с электричеством? Ответить на этот вопрос сложно, поскольку поставлен он некорректным образом, ведь наиболее яркое природное явление - молния, известная с незапамятных времен.

Осмысленное изучение электрических процессов началось лишь с конца первой половины XVIII века. Здесь следует отметить серьезный вклад в представления человека об электричестве Чарльза Кулона, исследовавшего силу взаимодействия заряженных частиц, Георга Ома, математически описавшего параметры тока в замкнутой цепи, и Бенджамина Франклина, который провел множество экспериментов, изучая природу вышеназванной молнии. Помимо них, большую роль в развитии сыграли такие ученые, как Луиджи Гальвани (изучение нервных импульсов, изобретение первой «батарейки») и Майкл Фарадей (исследование тока в электролитах).

Достижения всех названных ученых создали прочный фундамент для изучения и понимания сложных электрических процессов, одним из которых является электрический разряд.

Что представляет собой разряд и какие условия необходимы для его существования?

Разряд электрического тока - это физический процесс, который характеризуется наличием потока заряженных частиц между двумя пространственными областями, имеющими разный потенциал в газовой среде. Разберем это определение.

Во-первых, когда говорят о разряде, то всегда имеют в виду газ. Разряды в жидкостях и твердых телах тоже могут возникать (пробой твердого конденсатора), однако процесс изучения этого явления проще рассмотреть в менее плотной среде. Более того, именно разряды в газах часто наблюдаются и имеют большое значение для жизнедеятельности человека.

Во-вторых, как сказано в определении электрического разряда, он возникает только при соблюдении двух важных условий:

  • при существования разности потенциалов (напряженности электрического поля);
  • наличии носителей заряда (свободных ионов и электронов).

Разность потенциалов обеспечивает направленное движение заряда. Если она превышает некоторое пороговое значение, то несамостоятельный разряд переходит в самоподдерживающийся или самостоятельный.

Что касается свободных носителей заряда, то в любом газе они всегда присутствуют. Их концентрация, естественно, зависит от ряда внешних факторов и свойств самого газа, но сам факт их наличия является бесспорным. Связано это с существованием таких источников ионизации нейтральных атомов и молекул, как ультрафиолетовые лучи от Солнца, космическое излучение и естественная радиация нашей планеты.

Соотношение между разностью потенциалов и концентрацией носителей определяет характер разряда.

Виды электрических разрядов

Приведем список этих видов, а затем подробнее охарактеризуем каждый из них. Итак, все разряды в газовых средах принято разделять на следующие:

  • тлеющий;
  • искровой;
  • дуговой;
  • коронный.

Физически они отличаются друг от друга лишь мощностью (плотностью тока) и, как следствие, температурой, а также характером их проявления во времени. Во всех случаях речь идет о переносе положительного заряда (катионы) к катоду (область низкого потенциала) и отрицательного заряда (анионы, электроны) к аноду (зона высокого потенциала).

Тлеющий разряд

Для его существования необходимо создать низкие давления газа (в сотни и тысячи раз меньше атмосферного). Тлеющий разряд наблюдается в катодных трубках, которые заполняются каким-либо газом (например, Ne, Ar, Kr и другие). Приложение напряжения к электродам трубки приводит к активации следующего процесса: имеющиеся в газе катионы начинают ускоренно двигаться, достигнув катода, они ударяют по нему, передавая импульс и выбивая электроны. Последние при наличии достаточной кинетической энергии могут приводить к ионизации нейтральных молекул газа. Описанный процесс будет самоподдерживающимся только в случае достаточной энергии катионов, бомбардирующих катод, и их определенного количества, что зависит от разности потенциалов на электродах и давления газа в трубке.

Тлеющий разряд светится. Излучение электромагнитных волн обусловлено двумя идущими параллельно процессами:

  • рекомбинация пар электрон-катион, сопровождаемая выделением энергии;
  • переход нейтральных молекул (атомов) газа из возбужденного состояния в основное.

Типичными характеристиками этого вида разряда являются небольшие токи (несколько миллиампер) и небольшие стационарные напряжения (100-400 В), однако пороговое напряжение равно нескольким тысячам вольт, что зависит от давления газа.

Примерами тлеющего разряда являются люминесцентные и неоновые лампы. В природе к этому типу можно отнести северное сияние (движение потоков ионов в магнитном поле Земли).

Искровой разряд

Это типичный вид разряда, который проявляется в Для его существования необходимо не только наличие больших давлений газа (1 атм и больше), но и огромных напряжений. Воздух представляет собой достаточно хороший диэлектрик (изолятор). Его проницаемость лежит в пределах от 4 до 30 кВ/см, что зависит от наличия в нем влажности и твердых частиц. Эти цифры говорят о том, что для получения пробоя (искры) необходимо приложить минимум 4 000 000 вольт на каждый метр воздуха!

В природе такие условия возникают в кучевых облаках, когда в результате процессов трения между воздушными массами, конвекции воздуха и кристаллизации (конденсации) происходит перераспределение зарядов таким образом, что нижние слои туч заряжаются отрицательно, а верхние - положительно. Разность потенциалов постепенно накапливается, когда ее значение начинает превышать изоляционные возможности воздуха (несколько млн вольт на метр), то возникает молния - электрический разряд, который длится в течение долей секунды. Сила тока в нем достигает 10-40 тысяч ампер, а температура плазмы в канале поднимается до 20 000 К.

Минимальную энергию, которая выделяется в процессе молнии, можно вычислить, если принять во внимание следующие данные: процесс развивается в течение t=1*10 -6 с, I = 10 000 А, U = 10 9 В, тогда получим:

E = I*U*t = 10 млн Дж

Полученная цифра эквивалентна энергии, которая освобождается при взрыве 250 кг динамита.

Так же как и искровой, он возникает при наличии достаточного давления в газе. Его характеристики практически полностью аналогичны искровому, но имеются и отличия:

  • во-первых, токи достигают десяти тысяч ампер, но напряжение при этом составляет несколько сотен вольт, что связано с высокой проводимостью среды;
  • во-вторых, дуговой разряд существует стабильно во времени, в отличие от искрового.

Переход в этот вид разряда осуществляется постепенным повышением напряжения. Поддерживается разряд за счет термоэлектронной эмиссии с катода. Ярким его примером является сварочная дуга.

Коронный разряд

Этот тип электрического разряда в газах часто наблюдали моряки, которые путешествовали в Новый Мир, открытый Колумбом. Они называли синеватое свечение на концах мачт «огнями Святого Эльма».

Возникает коронный разряд вокруг объектов, имеющих очень сильную напряженность электрического поля. Такие условия создаются вблизи острых предметов (мачт кораблей, зданий с остроконечными крышами). Когда тело имеет некоторый статический заряд, то напряженность поля на его концах приводит к ионизации окружающего воздуха. Возникшие ионы начинают свой дрейф к источнику поля. Эти слабые токи, вызывающие аналогичные процессы, что и в случае тлеющего разряда, приводят к появлению свечения.

Опасность разрядов для здоровья человека

Коронный и тлеющий разряды особой опасности не представляют для человека, поскольку они характеризуются низкими токами (миллиамперы). Два других из вышеназванных разрядов являются смертельно опасными в случае прямого контакта с ними.

Если человек наблюдает приближение молнии, то он должен отключить все электроприборы (включая мобильные телефоны), а также расположиться так, чтобы не выделяться среди окружающей местности в плане высоты.

Понятие электрического разряда в газах включает все случаи перемещения в газах под действием электрического поля заряженных частиц (электронов и ионов), возникших в результате ионизационных процессов . Обязательным условием возникновения разряда в газах является наличие в нем свободных зарядов - электронов и ионов.

Газ, состоящий только из нейтральных молекул, совершенно не проводит электрического тока, т. е. является идеальным диэлектриком . В реальных условиях за счет воздействия естественных ионизаторов (ультрафиолетовое излучение Солнца, космические лучи, радиоактивное излучение Земли и т. п.) в газе всегда имеется некоторое количество свободных зарядов - ионов и электронов, которые сообщают ему определенную электропроводность.

Мощность естественных ионизаторов очень мала: в результате их воздействия в воздухе ежесекундно образуется около одной пары зарядов в каждом кубическом сантиметре, что соответствует приращению объемной плотности зарядов ро=1,6 -19 Кл/(см 3 х с). Такое же количество зарядов подвергается ежесекундно рекомбинации. Числе зарядов в 1 см 3 воздуха при этом остается постоянным и равным 500-1000 парам ионов.

Таким образом, если к пластинам плоского воздушного конденсатора с расстоянием S между электродами приложить напряжение, то в цепи установится ток, плотность которого J =2poS = 3,2х10 -19 S А/см2.

Применение искусственных ионизаторов во много раз увеличивает плотность тока в газе. Например, при освещении газового промежутка ртутно-кварцевой лампой плотность тока в газе возрастает до 10 - 12 А/см2, при наличии искрового разряда вблизи ионизируемого объема создаются токи порядка 10 -10 А/см2 и т. д.

Рассмотрим зависимость тока, проходящего через газовый промежуток с однородным электрическим полем, от величины приложенного напряжени я (рис. 1).

Рис. 1. Вольт-амперная характеристика газового разряда

Вначале по мере увеличения напряжения ток в промежутке возрастает за счет того, что все большее количество зарядов попадает под действием электрического поля на электроды (участок OA). На участке АВ ток практически не меняется, так как все образующиеся за счет внешних ионизаторов заряды попадают на электроды. Величина тока насыщения Is определяется интенсивностью воздействующего на промежуток ионизатора.

При дальнейшем увеличении напряжения ток резко возрастает (участок ВС), что свидетельствует об интенсивном развитии процессов ионизации газа под действием электрического поля. При напряжении U0 происходит резкое увеличение тока в промежутке, который при этом теряет свойства диэлектрика и превращается в проводник.

Явление, при котором между электродами газового промежутка возникает канал высокой проводимости, называют электрическим пробоем (пробой в газе часто называют электрическим разрядом, имея в виду весь процесс образования пробоя).

Электрический разряд, соответствующий участку ОАВС характеристики, называют несамостоятельным , так как на этом участке ток в газовом промежутке определяется интенсивностью воздействующего ионизатора. Разряд на участке после точки С называют самостоятельным , так как ток разряда на этом участке зависит только от параметров самой электрической цепи (ее сопротивления и мощности источника питания) и для его поддержания не требуется образования заряженных частиц за счет внешних ионизаторов. Напряжение Uo при котором начинается самостоятельный разряд, называют начальным напряжением .

Формы самостоятельного разряда в газах в зависимости от условий, в которых протекает разряд, могут быть различными.

При малых давлениях, когда из-за небольшого числа молекул газа в единице объема промежуток не может приобрести большую проводимость, возникает тлеющий разряд . Плотность тока при тлеющем разряде невелика (1-5 мА/см2), разряд охватывает все пространство между электродами.

Рис. 2. Тлеющий разряд в газе

При давлениях газа, близких к атмосферному и выше, в случае, если мощность источника питания невелика или напряжение прикладывается к промежутку на короткое время, имеет место искровой разряд . Примером искрового разряда является разряд . При длительном действии напряжения искровой разряд имеет вид искр, последовательно возникающих между электродами.

Рис. 3. Искровой разряд

В случае значительной мощности источника питания искровой разряд переходит в дуговой , при котором через промежуток может протекать ток, достигающий сотен и тысяч ампер. Такой ток способствует разогреву канала разряда, увеличению его проводимости, и в результате происходит дальнейшее увеличение тока. Так как этот процесс требует для своего завершения некоторого времени, то при кратковременном приложении напряжения искровой разряд в дуговой не переходит.

Рис. 4. Дуговой разряд

В резконеоднородных полях самостоятельный разряд начинается всегда в виде коронного разряда , который развивается только в той части газового промежутка, где напряженность поля наиболее высока (около острых краев электродов). При коронном разряде между электродами не возникает сквозного канала высокой проводимости, т. е. промежуток сохраняет свои изолирующие свойства. При дальнейшем увеличении приложенного напряжения коронный разряд переходит в искровой или дуговой.

Коронный разряд - вид стационарного электрического разряда в газе достаточной плотности, возникающего в сильном неоднородном электрическом поле. Ионизация и возбуждение нейтральных частиц газа лавинами электронов локализованы в ограниченной зоне (чехол короны или зона ионизации) сильного электрического поля вблизи электрода с малым радиусом кривизны. Бледноголубое или фиолетовое свечение газа в зоне ионизации по аналогии с ореолом солнечной короны дало повод к названию данного вида разряда.

Помимо излучения в видимой, ультрафиолетовой (главным образом), а также в более коротковолновой частях спектра, коронный разряд сопровождается движением частиц газа от коронирующего электрода - т. н. «электрическим ветром», шелестящим шумом, иногда радиоизлучением, химия, реакциями (например, образованием озона и окислов азота воздуха).

Рис. 5. Коронный разряд в газе

Закономерности возникновения электрического разряда в различных газах одинаковы, разница заключается в значениях коэффициентов, характеризующих процесс.

Электрические разряды в газе делятся на две группы: несамостоятельные разряды и самостоятельные разряды.

Несамостоятельным разрядом называется электрический разряд, требующий для своего поддержания образования в разрядном промежутке заряженных частиц под действием внешних факторов (внешнего воздействия на газ или электроды, увеличивающего концентрацию заряженных частиц в объеме).

Самостоятельным разрядом называется электрический разряд, существующий под действием приложенного к электродам напряжения и не требующий для своего поддержания образования заряженных частиц за счет действия других внешних факторов.

Если разрядную трубку с двумя плоскими холодными электродами наполнить газом и включить в электрическую цепь, содержащую источник э. д. с. Еа и балластный резистор R (рис. 3-21, а), то в зависимости от протекающего через трубку тока (устанавливаемого подбором сопротивления R) в ней возникают различные виды разряда, характеризующиеся разными физическими процессами в объеме газа, разным характером свечения и разными величинами падения напряжения на разряде.

Рис.3.21
a - схема включения разрядной трубки;
б - вольт-амперная характеристика самостоятельного разряда.

Приведенная на рис. 3-21,6 вольт-амперная характеристика не включает в себя видов разряда, возникающих при высоких давлениях, а именно искрового, коронного и безэлектродного высокочастотного .

На рис. 3-21,6 приведена полная вольт-амперная характеристика такой разрядной трубки. Участки ее, соответствующие различным видам разряда, отделены друг от друга пунктирными линиями и пронумерованы.

В табл. 3-14 указаны основные особенности различных видов разряда.

№ области по рис. 3-21

Название разряда

Элементарные процессы в объеме

Элементарные процессы на катоде

Применение

Несамостоятельный темный разряд

Электрическое поле определяется геометрией н потенциалами ограничивающих разряд поверхностей. Объемный заряд мал и не искажает электрическое поле. Ток создается зарядами, возникающими под действием посторонних ионизаторов (космическое и радиоактивное излучения, фотоионизация и др.)

Происходит газовое усиление в результате ионизации атомов газа движущимися к аноду электронами.

Приходящие из разряда ионы рекомбинируют с электронами катода. Возможны слабая эмиссия электронов из катода под действием света (при активированных катодах), а также электронная эмиссия под действием положительных ионов.

Газонаполненные фотоэлементы, счетчики и ионизационные камеры.

Самостоятельный темный разряд

Объемный заряд мал и слабо искажает распределение потенциала между электродами. Имеют место возбуждение и ионизация атомов при соударениях с ними электронов, ведущие к развитию электронных лавин и потоков ионов к катоду.

Выполняется условие самостоятельности разряда. Присутствие посторонних ионизаторов не обязательно. Свечение газа чрезвычайно слабое, не наблюдаемое глазом.

Интенсивная эмиссия из катода под действием положительных ионов, обеспечивающая существование разряда.

Переходная форма разряда от темного к тлеющему

Интенсивные электронные лавины приводят к процессам возбуждения и ионизации в прианодной области. Около анода наблюдается свечение газа. Объемный за ряд электронов частично скомпенсирован ионами, особенно в прианодной области.

Эмиссия электронов из катода под действием положительных ионов.

Нормальный тлеющий разряд

Формируются характерные участки разряда: прикатодная область с большим падением потенциала и столб разряда, в котором объемные заряды компенсированы и напряженность поля невелика. Газ в столбе разряда находится в состоянии, называемом плазмой

Характерно постоянство при изменении тока, а также давления газа. Величина определяется родом газа и материалом катода. Ярко светящаяся пленка газа у поверхности катода. Свечением покрыт не весь катод. Площадь свечения пропорциональна току

Эмиссия электронов из катода под действием положительных ионов, метастабильных и быстрых нейтральных атомов, фотоэмиссия под действием излучения разряда.

Стабилитроны, тиратроны тлеющего разряда, декатроны, индикаторные приборы, газосветные трубки.

Аномальный тлеющий разряд

По физике процесс аналогичен нормальному тлеющему разряду. Катодное свечение покрывает весь катод. Увеличение тока сопровождается ростом плотности тока на катоде и катодного падения потенциала .

Процессы на катоде аналогичны процессам при нормальном тлеющем разряде.

Индикаторные лампы, очистка деталей катодным распылением, получение тонких пленок.

Переходная форма разряда от тлеющего к дуговому

Процессы в столбе разряда качественно аналогичны тлеющему разряду. Катодная область заметно сужается Возникают местные участки сильного нагрева катода.

Добавляется процесс

термоэлектронной эмиссии (при тугоплавком катоде) или электростатической эмиссии (при ртутном катоде).

Разрядники.

Дуговой разряд

Участок катодного падения потенциала имеет малую протяженность. Величина мала - порядка потенциала ионизации газа, заполняющего прибор. Процессы в столбе разряда качественно аналогичны процессам в столбе тлеющего разряда. Столб разряда светящийся.

При высоких давлениях столб стягивается к оси разряда, образуя "шнур".



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Про деток, от рождения до школы