Про деток, от рождения до школы

Конспект урока

«Методы решения иррациональных уравнений»

11 класс физико-математического профиля.

Зеленодольского муниципального района РТ»

Валиева С.З.

Тема урока: Методы решения иррациональных уравнений

Цель урока: 1.Изучить различные способы решения иррациональных уравнений.


  1. Развивать умение обобщать, правильно отбирать способы решения иррациональных уравнений.

  2. Развивать самостоятельность, воспитывать грамотность речи

Тип урока: семинар.
План урока:


  1. Организационный момент

  2. Изучение нового материала

  3. Закрепление

  4. Домашнее задание

  5. Итог урока

Ход урока
I . Организационный момент: сообщение темы урока, цели урока.

На предыдущем уроке мы рассмотрели решение иррациональных уравнений, содержащих квадратные корни, возведением их в квадрат. При этом мы получаем уравнение-следствие, что приводит иногда к появлению посторонних корней. И тогда обязательной частью решения уравнения является проверка корней. Также рассмотрели решение уравнений, используя определение квадратного корня. В этом случае проверку можно не делать. Однако при решении уравнений не всегда следует сразу приступать к «слепому» применению алгоритмов решения уравнения. В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. Поэтому необходимо знать и другие методы решения иррациональных уравнений, с которыми мы сегодня и познакомимся. Предварительно класс был разделен на 8 творческих групп, и им было дано на конкретных примерах раскрыть суть того или иного метода. Слово даем им.


II. Изучение нового материала.

Из каждой группы 1 ученик объясняет ребятам способ решения иррациональных уравнений. Весь класс слушают и конспектируют их рассказ.

1 способ. Введение новой переменной.

Решить уравнение: (2х + 3) 2 - 3

4х 2 + 12х + 9 - 3

4х 2 - 8х - 51 - 3

, t ≥0

х 2 – 2х – 6 = t 2 ;

4t 2 – 3t – 27 = 0

х 2 – 2х – 15 =0

х 2 – 2х – 6 =9;

Ответ: -3; 5.

2 способ. Исследование ОДЗ.

Решить уравнение

ОДЗ:


х = 2. Проверкой убеждаемся, что х = 2 является корнем уравнения.

3 способ. Умножение обеих частей уравнения на сопряженный множитель.

+
(умножим обе части на -
)

х + 3 – х – 8 = 5(-)


2=4, отсюда х=1. Проверкой убеждаемся, что х = 1 является корнем данного уравнения.


4 способ. Сведение уравнения к системе с помощью введения переменной.

Решить уравнение

Пусть = u,
=v.

Получим систему:

Решим методом подстановки. Получим u = 2, v = 2. Значит,

получим х = 1.

Ответ: х = 1.

5 способ. Выделение полного квадрата.

Решить уравнение

Раскроем модули. Т.к. -1≤сos0,5x≤1, то -4≤сos0,5x-3≤-2, значит, . Аналогично,

Тогда получим уравнение

x = 4πn, nZ.

Ответ: 4πn, nZ.

6 способ. Метод оценки

Решить уравнение

ОДЗ: х 3 - 2х 2 - 4х + 8 ≥ 0, по определению правая часть -х 3 + 2х 2 + 4х - 8 ≥ 0

получим
т.е. х 3 - 2х 2 - 4х + 8 = 0. Решив уравнение разложением на множители, получим х = 2, х = -2

7 способ: Использование свойств монотонности функций.

Решить уравнение . Функции строго возрастают. Сумма возрастающих функций есть возрастающая и данное уравнение имеет не более одного корня. Подбором находим х = 1.

8 способ. Использование векторов.

Решить уравнение . ОДЗ: -1≤х≤3.

Пусть вектор
. Скалярное произведение векторов - есть левая часть. Найдем произведение их длин . Это есть правая часть. Получили
, т.е. векторы а и в – коллинеарны. Отсюда
. Возведем обе части в квадрат. Решив уравнение, получим х = 1 и х =
.


  1. Закрепление. (каждому ученику раздаются листы с заданиями)
Фронтальная устная работа

Найти идею решения уравнений (1-10)

1.
(ОДЗ - )

2.
х = 2

3. х 2 – 3х +
(замена)

4. (выделение полного квадрата)

5.
(Сведение уравнения к системе с помощью введения переменной.)

6.
(умножением на сопряженное выражение)

7.
т.к.
. То данное уравнение не имеет корней.

8. Т.к. каждое слагаемое неотрицательно, приравниваем их к нулю и решаем систему.

9. 3

10. Найдите корень уравнения (или произведение корней, если их несколько) уравнения.

Письменная самостоятельная работа с последующей проверкой

решить уравнения под номерами 11,13,17,19


Решить уравнения:

12. (х + 6) 2 -

14.


  • Метод оценки

  • Использование свойств монотонности функций.

  • Использование векторов.

    1. Какие из этих методов используются при решении уравнений других типов?

    2. Какой из этих методов вам понравился больше всего и почему?

    1. Домашнее задание: Решить оставшиеся уравнения.
    Список литературы:

    1. Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин. М: Прсвещение, 2009

    1. Дидактические материалы по алгебре и началам анализа для 11 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. – М.: Просвещение, 2003.

    2. Мордкович А. Г. Алгебра и начала анализа. 10 – 11 кл.: Задачник для общеобразоват. учреждений. – М.: Мнемозина, 2000.

    3. Ершова А. П., Голобородько В. В. Самостоятельные и контрольные работы по алгебре и началам анализа для 10 – 11 классов. – М.: Илекса, 2004

    4. КИМы ЕГЭ 2002 – 2010 г. г
    6. Алгебраический тренажер. А.Г.Мерзляк, В.Б.Полонский, М.С. Якир. Пособие для школьников и абитуриентов. Москва.: «Илекса» 2001г.
    7. Уравнения и неравенства. Нестандартные методы решения. Учебно – методическое пособие. 10 – 11 классы. С.Н.Олейник, М.К. Потапов, П.И.Пасиченко. Москва. «Дрофа». 2001г.

    Решение иррациональных уравнений.

    В этой статье мы поговорим о способах решения простейших иррациональных уравнений.

    Иррациональным уравнением называется уравнение, которое содержит неизвестное под знаком корня.

    Давайте рассмотрим два вида иррациональных уравнений , которые очень похожи на первый взгляд, но по сути сильно друг от друга отличаются.

    (1)

    (2)

    В первом уравнении мы видим, что неизвестное стоит под знаком корня третьей степени. Мы можем извлекать корень нечетной степени из отрицательного числа, поэтому в этом уравнении нет никаких ограничений ни на выражение, стоящее под знаком корня, ни на выражение, стоящее в правой части уравнения. Мы можем возвести обе части уравнения в третью степень, чтобы избавиться от корня. Получим равносильное уравнение:

    При возведении правой и левой части уравнения в нечетную степень мы можем не опасаться получить посторонние корни.

    Пример 1 . Решим уравнение

    Возведем обе части уравнения в третью степень. Получим равносильное уравнение:

    Перенесем все слагаемые в одну сторону и вынесем за скобки х:

    Приравняем каждый множитель к нулю, получим:

    Ответ: {0;1;2}

    Посмотрим внимательно на второе уравнение: . В левой части уравнения стоит квадратный корень, который принимает только неотрицательные значения. Поэтому, чтобы уравнение имело решения, правая часть тоже должна быть неотрицательной. Поэтому на правую часть уравнения накладывается условие:

    Title="g(x)>=0"> - это условие существования корней .

    Чтобы решить уравнение такого вида, нужно обе части уравнения возвести в квадрат:

    (3)

    Возведение в квадрат может привести к появлению посторонних корней, поэтому нам надо уравнения:

    Title="f(x)>=0"> (4)

    Однако, неравенство (4) следует из условия (3): если в правой части равенства стоит квадрат какого-то выражения, а квадрат любого выражения может принимать только неотрицательные значения, следовательно левая часть тоже должна быть неотрицательна. Поэтому условие (4) автоматически следует из условия (3) и наше уравнение равносильно системе:

    Title="delim{lbrace}{matrix{2}{1}{{f(x)=g^2{(x)}} {g(x)>=0} }}{ }">

    Пример 2 . Решим уравнение:

    .

    Перейдем к равносильной системе:

    Title="delim{lbrace}{matrix{2}{1}{{2x^2-7x+5={(1-x)}^2} {1-x>=0} }}{ }">

    Решим первое уравнение системы и проверим, какие корни удовлетворяют неравеству.

    Неравеству title="1-x>=0">удовлетворяет только корень

    Ответ: x=1

    Внимание! Если мы в процессе решения возводим обе части уравнения в квадрат, то нужно помнить, что могут появиться посторонние корни. Поэтому либо нужно переходить к равносильной системе, либо в конце решения СДЕЛАТЬ ПРОВЕРКУ: найти корни и подставить их в исходное уравнение.

    Пример 3 . Решим уравнение:

    Чтобы решить это уравнение, нам также нужно возвести обе части в квадрат. Давайте в этом уравнении не будем заморачиваться с ОДЗ и условием существования корней, а просто в конце решения сделаем проверку.

    Воозведем обе части уравнения в квадрат:

    Перенесем слагаемое, содержащее корень влево, а все остальные слагаемые вправо:

    Еще раз возведем обе части уравнения в квадрат:

    По тереме Виета:

    Сделаем проверку. Для этого подставим найденные корни в исходное уравнение. Очевидно, что при правая часть исходного уравнения отрицательна, а левая положительна.

    При получаем верное равенство.

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Уравнения, в которых под знаком корня содержится переменная, называт иррациональными.

    Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо эквивалентно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

    При решении иррациональных уравнений необходимо учитывать следующее:

    1) если показатель корня - четное число, то подкоренное выражение должно быть неотрицательно; при этом значение корня также является неотрицательным (опредедение корня с четным показателем степени);

    2) если показатель корня - нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак корня совпадает со знаком подкоренного выражения.

    Пример 1. Решить уравнение

    Возведем обе части уравнения в квадрат.
    x 2 - 3 = 1;
    Перенесем -3 из левой части уравнения в правую и выполним приведение подобных слагаемых.
    x 2 = 4;
    Полученное неполное квадратное уравнение имеет два корня -2 и 2.

    Произведем проверку полученных корней, для этого произведем подстановку значений переменной x в исходное уравнение.
    Проверка.
    При x 1 = -2 - истинно:
    При x 2 = -2- истинно.
    Отсюда следует, что исходное иррациональное уравнение имеет два корня -2 и 2.

    Пример 2. Решить уравнение.

    Это уравнение можно решить по такой же методике как и в первом примере, но мы поступим иначе.

    Найдем ОДЗ данного уравнения. Из определения квадратного корня следует, что в данном уравнении одновременно должны выполнятся два условия:

    ОДЗ данного уранения: x.

    Ответ: корней нет.

    Пример 3. Решить уравнение=+ 2.

    Нахождение ОДЗ в этом уравнении представляет собой достаточно трудную задачу. Возведем обе части уравнения в квадрат:
    x 3 + 4x - 1 - 8= x 3 - 1 + 4+ 4x;
    =0;
    x 1 =1; x 2 =0.
    Произведя проверку устанавливаем, что x 2 =0 лишний корень.
    Ответ: x 1 =1.

    Пример 4. Решить уравнение x =.

    В этом примере ОДЗ найти легко. ОДЗ этого уравнения: x[-1;).

    Возведем обе части этого уравнения в квадрат, в результате получим уравнение x 2 = x + 1. Корни этого уравнения:

    Произвести проверку найденных корней трудно. Но, несмотря на то, что оба корня принадлежат ОДЗ утверждать, что оба корня являются корнями исходного уравнения нельзя. Это приведет к ошибке. В данном случае иррациональное уравнение равносильно совокупности двух неравенств и одного уравнения:

    x + 10 и x0 и x 2 = x + 1, из которой следует, что отрицательный корень для иррационального уравнения является посторонним и его нужно отбросить.

    Пример 5 . Решить уравнение+= 7.

    Возведем обе части уравнения в квадрат и выполним приведение подобных членов, перенес слагаемых из одной части равенства в другую и умножение обеих частей на 0,5. В результате мы получим уравнение
    = 12, (*) являющееся следствием исходного. Снова возведем обе части уравнения в квадрат. Получим уравнение (х + 5)(20 - х) = 144, являющееся следствием исходного. Полученное уравнение приводится к виду x 2 - 15x + 44 =0.

    Это уравнение (также являющееся следствием исходного) имеет корни x 1 = 4, х 2 = 11. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

    Отв. х 1 = 4, х 2 = 11.

    Замечание . При возведении уравнений в квадрат учащиеся нередко в уравнениях типа (*) производят перемножение подкоренных выражений, т. е. вместо уравнения = 12, пишут уравнение = 12. Это не приводит к ошибкам, поскольку уравнения являются следствиями уравнений. Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения.

    В рассмотренных выше примерах можно было сначала перенести один из радикалов в правую часть уравнения. Тогда в левой части уравнения останется один радикал и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональная функция. Такой прием (уединение радикала) довольно часто применяется при решении иррациональных уравнений.

    Пример 6 . Решить уравнение-= 3.

    Уединив первый радикал, получаем уравнение
    =+ 3, равносильное исходному.

    Возводя обе части этого уравнения в квадрат, получаем уравнение

    x 2 + 5x + 2 = x 2 - 3x + 3 + 6, равносильное уравнению

    4x - 5 = 3(*). Это уравнение является следствием исходного уравнения. Возводя обе части уравнения в квадрат, приходим к уравнению
    16x 2 - 40x + 25 = 9(x 2 - Зх + 3), или

    7x 2 - 13x - 2 = 0.

    Это уравнение является следствием уравнения (*) (а значит, и исходного уравнения) и имеет корни. Первый корень x 1 = 2 удовлетворяет исходному уравнению, а второй x 2 =- не удовлетворяет.

    Ответ: x = 2.

    Заметим, что если бы мы сразу, не уединив один из радикалов, возводили обе части исходного уравнения в квадрат нам бы пришлось выполнить довольно громозкие преобразования.

    При решении иррациональных уравнений, кроме уединения радикалов используют и другие методы. Рассмотрим пример использования метода замены неизвестного (метод введения вспомогательной переменной).

    Каждое новое действие в математике мгновенно порождает обратное ему. Когда-то давно древние греки обнаружили, что квадратный кусок земли длиной и шириной в 2 метра будет иметь площадь 2*2 = 4 квадратных метра (в дальнейшем будет обозначаться m^2) . А теперь наоборот, если бы грек знал, что его участок земли квадратный и имеет площадь 4 m^2, как бы он узнал, какая длина и ширина его участка? Была введена операция, являющейся обратной к операции возведения в квадрат и стала называться извлечением квадратного корня. Люди стали понимать, что 2 в квадрате (2^2) равно 4. И наоборот, квадратный корень из 4 (далее будет обозначаться √(4)) будет равен двойке. Модели усложнялись, записи, описывающие процессы с корнями, также усложнялись. Многократно возникал вопрос, как решить уравнение с корнем.

    Пусть некоторая величина x при умножении самой на себя один раз даёт 9. Это можно записать как x*x=9. Или же через степень: x^2=9. Чтобы найти х, следует извлечь корень из 9, что уже в какой-то степени является уравнением с радикалом: x=√(9) . Корень можно извлекать устно или использовать для этого калькулятор. Далее следует рассмотреть обратную задачу. Некая величина, при извлечении из неё квадратного корня, даёт значение 7. Если записать это в виде иррационального уравнения, получится: √(x) = 7. Для решения такой задачи необходимо обе части выражения возвести в квадрат. Учитывая, что √(x) *√(x) =x, получается x = 49. Корень сразу готов в чистом виде. Далее следует разобрать более сложные примеры уравнения с корнями.

    Пусть от некой величины отняли 5, затем выражение возвели в степень 1/2. В итоге было получено число 3. Теперь данное условие необходимо записать как уравнение: √(x-5) =3. Далее следует умножить каждую часть уравнения саму на себя: x-5 = 3. После возведения во вторую степень, выражение было избавлено от радикалов. Теперь стоит решить простейшее линейное уравнение, перенеся пятёрку в правую часть и поменяв её знак. x = 5+3. x = 8. К сожалению, не все жизненные процессы можно описать такими простыми уравнениями. Очень часто можно встретить выражения с несколькими радикалами, иногда степень корня может быть выше второй. Для таких тождеств не существует единого алгоритма решений. К каждому уравнению стоит искать особый подход. Приводится пример, в котором уравнение с корнем имеет третью степень.

    Корень кубический будет обозначаться 3√. Найти объём контейнера, имеющего форму куба со стороной 5 метров. Пусть объём равен x m^3. Тогда кубический корень из объёма будет равен стороне куба и равняться пяти метрам. Получено уравнение: 3√(x) =5. Для его решения необходимо возвести обе части в третью степень, x = 125. Ответ: 125 кубометров. Дальше пример уравнения с суммой корней. √(x) +√(x-1) =5. Сначала необходимо возвести обе части в квадрат. Для этого стоит вспомнить формулу сокращенного умножения для квадрата суммы: (a+b) ^2=a^2+2*ab+b^2. Применив к уравнению, получается: x + 2*√(x) *√(x-1) +x-1 = 25. Далее корни оставляются в левой части, а всё остальное переносится в правую: 2*√(x) *√(x-1) = 26 - 2x. Удобно поделить обе части выражения на 2: √((x) (x-1)) = 13 - x. Получено более простое иррациональное уравнение.

    Далее снова следует возвести обе части в квадрат: x*(x-1) = 169 - 26x + x^2. Надо раскрыть скобки и привести подобные слагаемые: x^2 - x = 169 - 26x + x^2. Вторая степень пропадает, отсюда 25x = 169. x = 169/25 = 6,6. Выполнив проверку, подставив полученный корень в изначальное уравнение: √(6,6) +√(6,6-1) = 2,6 + √(5,6) = 2,6 + 2,4 = 5, можно получить удовлетворительный ответ. Также очень важно понимать, что выражение с корнем чётной степени не может быть отрицательным. Действительно, умножая любое число само на себя чётное число раз, невозможно получить значение меньше нуля. Поэтому такие уравнения, как √(x^2+7x-11) = -3 можно смело не решать, а писать что уравнение корней не имеет. Как упоминалось выше, решение уравнений с радикалами может иметь самые разнообразные формы.

    Простой пример уравнения, где необходимо проводить замену переменных. √(y) - 5*4√(y) +6 = 0, где 4√(y) - корень четвёртой степени из y. Предлагаемая замена выглядит следующим образом: x = 4√(y) . Проведя таковую, получится: x^2 - 5x + 6 = 0. Получено приведённое квадратное уравнение. Его дискриминант: 25 - 4*6 = 25 - 24 = 1. Первый корень x1 будет равен (5 + √1) /2 = 6/2 = 3. Второй корень x2 = (5 - √1) /2 = 4/2 = 2. Также можно найти корни, воспользовавшись следствием из теоремы Виета. Корни найдены, следует провести обратную замену. 4√(y) = 3, отсюда y1 = 1,6. Также 4√(y) = 2, извлекая корень 4 степени получается что y2 = 1,9. Значения вычислены на калькуляторе. Но их можно и не делать, оставив ответ в виде радикалов.



    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Про деток, от рождения до школы