Про деток, от рождения до школы

1

1 ГБОУ ВПО «Саратовский Государственный медицинский университет им. В.И. Разумовского Минздрава России»

1. Нормальная физиология: учебник / Под ред. А.В. Завьялова, В.М. Смирнова. – 2011. – 368 с.

2. Нормальная физиология: учебник [Н.А. Агаджанян, Н.А. Барабаш, А.Ф. Белов и др.] / Под ред. проф. В.М. Смирнова. – 3-е изд. – М.: Издательский центр «Академия», 2010. – 480 с.

3. Физиология человека / В.Ф. Киричук, О.Н. Антипова, Н.Е. Бабиченко, В.М. Головченко, Е.В. Понукалина, И.В. Смышлеева, Л.К. Токаева / Под ред В.Ф. Киричука. 2-е изд. – Саратов: Изд-во Саратовского медицинского университета, 2009. – 343 с.

4. Физиология и патофизиология красной крови: учеб. пособие / Н.П. Чеснокова, В.В. Моррисон, Е.В. Понукалина, Т.А.Невважай; под общ. ред. проф. Н.П. Чесноковой. – Саратов: Изд-во Сарат. мед. ун-та, 2013. – 80 с.

5. Патофизиология крови. Пер. с англ. – М. – СПб.: «Издательство БИНОМ» – «Невский Диалект», 2000. – 448 с., ил.

6. Механизмы развития болезней и синдромов / А.Ш. Зайчик, Л.П. Чурилов. Книга 1-я: учебник для студентов медицинских вузов. – СПб., 2007, ЭЛБИ. – 507 с.

7. Гематологический атлас. С.. Луговская, М.Е. Почтар. 3-е изд. – Москва – Тверь: ООО «Изд-во Триада», 2011. – С. 3–23.

8. Клеточные и молекулярные механизмы регуляции системы гемостаза в норме и патологии: монография / Б.И. Кузник. – Чита: Экспресс-издательство, 2010. – С. 261–368.

9. Гематология / Под ред проф. О.А. Рукавицына, А.Д. Павлова, Е.Ф. Морщаковой и др. – Изд–во СПб.: ООО «Д.П.», 2007. – С. 29–34.

Эритропоэз и механизмы его регуляции

В эмбриональном периоде кроветворение осуществляется вначале в кровяных островках желточного мешка, затем примерно спустя 5 недель эмбрионального развития - в печени. Селезенка включается в процесс кроветворения с 16 недели внутриутробного развития. Первые гемопоэтические элементы появляются в костном мозге на 2-ом месяце эмбрионального развития, однако миелоидный период кроветворения начинается на 4-5-м месяцах эмбрионального развития, вытесняя постепенно кроветворение в печени и селезенке. Костномозговой эритропоэз осуществляется вне синусов, в строме костного мозга, то есть эктраваскуляторно. К моменту рождения ребенка костный мозг развивается полностью, а экстрамедуллярное кроветворение практически завершается. Постэмбриональный период кроветворения начинается после рождения ребенка и продолжается на протяжении всей жизни. Гемопоэз осуществляется в специализированных гемопоэтических тканях: миелоидной (эпифизы трубчатых костей и полости многих губчатых костей) и лимфоидной (тимус, селезенка, лимфатические узлы). В миелоидной ткани образуются эритроциты, лейкоциты, тромбоциты. В лимфоидной ткани идет дальнейшая дифференцировка и созревание лимфоцитов, а также плазматических клеток - основных продуцентов антител.

Постэмбриональный гемопоэз обеспечивает процессы физиологической регенерации крови, то есть её обновление, что компенсирует физиологические процессы разрушения дифференцированных клеток крови.

В условиях нормы функциональная активность органов кроветворения и кроверазрушения строго сбалансирована, что обеспечивает относительное постоянство содержания эритроцитов и других клеток в периферической крови. Разрушение эритроцитов происходит примерно после 120-дневного пребывания их в системной циркуляции при участии тканевых макрофагов селезенки, лимфатических узлов, печени. Гемоглобин, освобождающийся в процессе распада эритроцитов, трансформируется в билирубин в клетках моноцитарно-макрофагальной системы, а затем в гембилирубин (непрямой билирубин), вступая во взаимодействие с белками крови или липопротеидами. Гембилирубин в свою очередь элиминируется из системного кровотока печеночными клетками, где превращается в прямой билирубин (соединение билирубина с глюкуроновой кислотой). Прямой билирубин вместе с желчью поступает в кишечник, постепенно превращается в другие желчные пигменты (стеркобилиноген, уробилиноген) которые, выделяясь с калом и мочой, придают им окраску. При внутриклеточном разрушении эритроцитов основным продуктом, образующимся после распада гемоглобина, является билирубин, а при внутрисосудистом гемолизе большие количества гемоглобина соединяются с α2-гликопротеином-гаптоглобином, который не проникает в мочу.

Основным регулятором эритропоэза является эритропоэтин - гликопротеид, интенсивно вырабатывающийся в условиях гипоксии. При гипоксических состояниях различного генеза концентрация эритропоэтина возрастает в десятки раз по сравнению с нормой. Основным источником синтеза эритропоэтина являются почки (до 90 %), печень (около 10 %), а также макрофаги костного мозга и селезенки. Для эритропоэтина характерен мембранный тип рецепции эритропоэтинчувствительными клетками костного мозга с последующими активацией митоза и дифференцировки клеток, в частности, стимуляцией транспорта железа в эритрокариоцитах, синтеза цепей глобина, ферментов образования гема, синтеза мембранных белков и эритроцитарных антигенов.

Эритропоэз стимулируется под влиянием катехоламинов, глюкокортикоидов, андрогенов, гормонов щитовидной железы, инсулина, плацентарного пролактина, ИЛ-3, ИЛ-6, ИЛ-9, ИЛ-11, КСФ, фолиевой кислоты, витаминов С, В12, железосодержащих препаратов.

Эритропоэз угнетается при повышенной оксигенации тканей, когда снижается образование эритропоэтина, а также под влиянием эстрогенов, глюкагона, ацетилхолина, интерферонов, ФНО-а, ИЛ-1, ИЛ-5, эритроцитарных кейлонов.

После рождения у ребенка в течение нескольких дней отмечают эритроцитоз - содержание эритроцитов составляет 5,5⋅1012/л, в то же время имеется высокое содержание гемоглобина (156-200 г/л). В течение первого года жизни изменяется антигенная структура эритроцитов, возникает прогрессирующее снижение фетального гемоглобина. К концу первого года жизни содержание фетального гемоглобина не превышает 1 %.

Общая характеристика эритроцитов

Эритроциты - самая многочисленная популяция клеток крови, обладающих разнообразными функциями, в частности дыхательной, трофической, детоксицирующей. Количество эритроцитов довольно вариабельно в условиях нормы: так, у женщин оно колеблется от 3,7⋅1012/л до 4,7⋅1012 /л, а у мужчин - от 4,5⋅1012/л до 5,5⋅1012 /л. Сдвиг этих показателей до нижней или верхней границы нормы может быть одним из признаков болезни.

Около 85 % всех эритроцитов имеют форму двояковогнутого диска, то есть являются дискоцитами. Форма эритроцита определяет цепь ауторегулирующих процессов, направленных на поддержание движения крови, её реологических свойств. В условиях патологии появляются эритроциты различной формы, такие состояния именуют пойкилоцитозом. Среди аномальных по форме эритроцитов различают овалоциты, аннулоциты, сфероциты, акантоциты, стоматоциты, щизоциты и другие формы, имеющие в ряде случаев определённое диагностическое значение.

Обычная в условиях нормы форма дискоцита значительно увеличивает площадь диффузии газов, электролитов и других субстратов. Средний диаметр эритроцита (нормоцита) в области краёв составляет 7,5 мкм, а максимальная толщина эритроцита в области краёв составляет 2 мкм. Эритроциты с диаметром от 2 до 6 мкм - микроциты, а с диаметром от 9 до 16 мкм - макроциты. Количество макро- и микроцитов в крови здорового человека в среднем составляет 15-20 %. Резкое увеличение содержания в крови микро- и макроцитов, именуемое анизоцитозом, является одним из признаков нарушения гемопоэза, характерным для анемий, лейкоцитозов, заболеваний инфекционно-аллергической природы. За время свой жизни в периферической крови эритроцит совершает кругооборот более 1 млн. раз, что вызывает развитие механических и метаболических изменений в эритроцитах. Эритроциты обладают пластичностью, то есть способностью к деформации при прохождении через узкие извитые капилляры диаметром 2,5-7,5 мкм. По мере старения их способность к деформации снижается, они застревают в капиллярах красной пульпы селезенки и там разрушаются в процессе фагоцитоза тканевыми макрофагами. Эластичность эритроцитов определяется особенностями структуры белка спектрина, гемоглобина, а также соотношением различных фракций липидов в мембране клеток.

Эритроциты играют важную роль в регуляции кислотно-основного состояния организма, в процессах свертывания крови и фибринолиза за счет адсорбции на их мембране разнообразных ферментных факторов этих систем. Эритроциты являются регуляторами водно-солевого обмена в связи со способностью депонировать воду и минеральные соли при нахождении их в венозной крови. Одной из главных функций эритроцитов является участие в иммунологических реакциях организма за счет наличия в мембранах эритроцитов комплекса полисахаридо-аминокислотных соединений, обладающих свойствами антигенов. Следует помнить, что суммарный объем эритроцитов приблизительно в 160 раз превышает таковой лейкоцитов и тромбоцитов, а потому кровь можно рассматривать как двухфазную систему, представляющую собой взвесь (суспензию) эритроцитов в плазме. При этом эритроцит подвергается в токе крови действию напряжения сдвига - оно более значительно у края и направлено в сторону стенки и менее выражено в центре сосуда. Разница действующих векторов силы у разных краёв обеспечивает вращательное движение эритроцитов в текущей жидкости, что при столкновении с тромбоцитами, имеющими меньший размер и худшую деформируемость по сравнению с эритроцитами, приводит к отбрасыванию кровяных пластинок к стенке сосуда. Благодаря этому пристеночный слой оказывается обогащенным тромбоцитами. Указанный эффект обусловлен величиной гематокрита, размером эритроцитов и тромбоцитов и ригидностью их мембран. Увеличение любого из указанных параметров сопровождается усилением передвижения кровяных пластинок к стенке сосуда, а при наличии повреждения эндотелия - адгезией к субэндотелию.

Свойства эритроцитов

Буферные свойства эритроцитов. Как известно, на единицу объема эритроцит связывает в 60 раз большее количество О2, чем плазма крови. О2 хорошо растворим в воде, поэтому диффузия его в растворе происходит очень быстро. Связывание О2 с эритроцитами определяется парциальным давлением газа в плазме и сорбционными свойствами Нв. В капиллярах легких, где давление О2 высоко (рО2 = 133 гПа), высоко и сродство Нв к О2, что обеспечивает трансмембранный перенос газа и связывание его с гемоглобином. В капиллярах тканей, где рО2 равно 40-50 гПа, сродство Нв к О2 резко снижается. При этом происходит выход кислорода из эритроцитов.

Транспорт СО2 через мембрану эритроцита также осуществляется за счет диффузного давления (в капиллярах легких рСО2 = 53гПа, а в капиллярах тканей - 61 гПа). Диффузия СО2 в растворах происходит примерно в 20 раз быстрее, чем О2.

Высокая скорость равновесия содержания СО2 в системе эритроцит - плазма крови обеспечивается наличием в эритроцитах особого фермента - карбоангидразы, катализирующего реакции трансформации СО2 и Н2О в углекислоту (Н2СО3), а также мощными системами трансмембранного обмена анионами.

При понижении концентрации СО2 в эритроцитах возникает отрицательный заряд Нв, что приводит к уменьшению содержания внутриклеточной воды, а при увеличении содержания СО2 в эритроцитах - они набухают.

Известно, что осмотическое давление в эритроцитах несколько выше, чем в плазме крови, что связанно с высокой внутриклеточной концентрацией белков по сравнению с плазмой крови. При этом содержание низкомолекулярных осмотически активных веществ (ионов натрия) в эритроцитах значительно меньше, чем в плазме крови. Величина осмотического давления в эритроцитах обеспечивает достаточный или нормальный тургор этих клеток. Осмотическое давление плазмы и эритроцитов в условиях нормы находится в динамическом равновесии, что обуславливает стабильность структуры эритроцитов.

При помещении эритроцитов в коллоидно-осмотическую среду с более низким осмотическим давлением (гипотонические растворы) может наступить осмотический или коллоидно-осмотический гемолиз. Последний обусловлен тем, что вода поступает в эритроциты до того момента, пока не разрывается мембрана и гемоглобин выходит в окружающую среду.

В умеренногипотонической среде эритроциты приобретают сферическую форму, их называют в связи с этим сфероцитами. Способность эритроцитов сохранять свою структуру при развитии гипоосмотических состояний или в гипоосмотической среде получила название осмотической устойчивости, или резистентности эритроцитов. Верхняя граница резистентности или максимальная устойчивость эритроцитов соответствует примерно 0,5-0,4 % раствора хлорида натрия.

При помещении эритроцитов в гипертоническую среду происходит их сморщивание в связи с потерей воды и уменьшением объема.

Эритроцитам свойственна способность к оседанию. Удельная масса цельной крови в норме для взрослого составляет в среднем 1,05-1,06. Удельная масса эритроцитов (1,085-1,096) выше, чем плазмы крови (1,02-1,027), поэтому эритроциты в пробирке с кровью, лишенной возможности свертываться, способны медленно оседать на дно. Скорость оседания эритроцитов в значительной мере определяется белковым составом плазмы крови, в частности уровнем мелкодисперсных белков-альбуминов. В связи с этим важная роль в обеспечении величины СОЭ отводится соотношению альбуминово-глобулиновых фракций белков крови. СОЭ у мужчин в среднем составляет 1-10 мм/ч, у небеременных женщин 2-15 мм/ч. При некоторых патологических процессах и заболеваниях, а также во второй половине беременности СОЭ повышается, так как увеличивается содержание в крови грубодисперсных белков глобулиновой фракции, получивших название аггломеринов, а также за счет усиления образования фибриногена.

При замедлении скорости кровотока и повышении вязкости крови эритроциты проявляют способность к агрегации. Вначале агрегация носит обратимый характер, при этом образуются ложные агрегаты, или монетные столбики. В случае быстрого восстановления кровотока они распадаются на полноценные клетки с сохраненной мембраной и внутриклеточной структурой.

Пластичность или деформируемость - это способность эритроцитов к обратимой деформации при прохождении через узкие извитые капилляры, микропоры. Данное свойство определяется особенностями структуры мембраны эритроциты, наличием в ней особого белка спектрина.

Таким образом, основными физиологическими и физико-химическими свойствами эритроцитов являются следующие:

Осмотическая устойчивость;

Способность к оседанию;

Способность к агрегации;

Пластичность;

Деструкция после определенного периода циркуляции в кровотоке.

Функции эритроцитов

1. Дыхательная функция заключается в захвате и переносе кислорода к тканям и экскреции СО2 из организма. Это обеспечивается содержащимся в эритроцитах белком гемоглобином. Гемоглобин - сложный белок состоит из групп гема и белкового остатка - глобина. Содержание гемоглобина у мужчин составляет 130-160 г/л, у женщин 120-140 г/л.

2. Трофическая функция эритроцитов связана с их способностью транспортировать аминокислоты, нуклеотиды, пептиды к различным органам и тканям, способствуя обеспечению репаративных процессов. В ряде случаев эту функцию называют транспортной.

3. Детоксиксицирующая функция эритроцитов обусловлена их способностью адсорбировать токсические продукты эндогенного или экзогенного происхождения и частично инактивировать их.

4. Участие в процессах свертывания крови за счет адсорбции на их мембране плазменных факторов свертывания крови

5. Участие в регуляции кислотно-основного состояния организма (буферная функция) за счет гемоглобина обеспечивающего до 70 % буферной ёмкости крови.

6.- Ферментативная функция связана с наличием в эритроцитах большого количества ферментов, в частности карбоангидразы, метгемоглобинредуктазы, ферментов гликолиза.

Библиографическая ссылка

Чеснокова Н.П., Понукалина Е.В., Бизенкова М.Н. ЛЕКЦИЯ 1. ЭРИТРОПОЭЗ И ЕГО РЕГУЛЯЦИЯ. ОБЩИЕ ХАРАКТЕРИСТИКИ ЭРИТРОЦИТОВ, ИХ СВОЙСТВ И ФУНКЦИЙ // Успехи современного естествознания. – 2015. – № 1-2. – С. 325-328;
URL: https://natural-sciences.ru/ru/article/view?id=34841 (дата обращения: 15.11.2017). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Красные кровяные тельца, или, по-научному, эритроциты, доставляют вдыхаемый нами кислород от легких к клеткам тела. Помогает им в этом гемоглобин - иссиня-красный пигмент, содержащий железо. Кроме выполнения основной функции, связанной с транспортом кислорода в ткани, принимают участие в работе иммунной системы. Имеют на своей поверхности рецепторы, связывающие иммунные комплексы (антиген-антитело). Переносят такие комплексы в печень, где передают их клеткам Купфера для последующей деградации. Вот как это происходит. В легких, где капиллярные сосуды особенно узкие и длинные, эритроцитам приходится буквально протискиваться сквозь них. Они прижимаются к стенкам капилляров, и лишь тончайший слой эпителия отделяет их от альвеол - легочных пузырьков, в которых заключен кислород. Этот слой не мешает железу гемоглобина захватывать кислород и, образуя с ним нестойкое соединение оксигемоглобин, снабжать кислородом красные кровяные тельца. При этом гемоглобин меняет свой цвет. То же происходит и с кровью: из темно-красной она, насытившись кислородом, становится ярко-алой. Теперь эритроциты разносят кислород по всему телу. С помощью кислорода клетки тела сжигают (окисляют) водород, добытый ими из пищи, превращая его в воду и вырабатывая АТФ. Попутно образуется углекислый газ. Часть его проникает в красные кровяные тельца. Большую же часть кровяная плазма доставляет в легкие, а оттуда углекислый газ при выдохе выводится наружу.

Нелегко обеспечить кислородом 100 трлн. клеток. Поэтому количество эритроцитов в крови человека очень велико: около 25 трлн. Если их вытянуть в цепочку, то ее длина составит 200000 км - можно пять раз опоясать земной шар. Так же велика и общая площадь поверхности красных кровяных телец, участвующих в газообмене, - 3200 кв. м. Это площадь квадрата со стороной около 57 м.

Эритроциты. Фото: Ed Uthman

Эритроциты живут очень недолго. Уже через четыре месяца они разрушаются (происходит это в основном в селезенке). Поэтому каждый день в костном мозге образуется более 200 млрд. новых красных кровяных телец.

В последние несколько лет к клеткам иммунной системы стали относить клетки эндотелия сосудов, которые в очагах воспаления приобретают многие черты клеток иммунной системы и активно участвуют в механизмах реализации иммунного ответа.

В норме эритроцитов в крови у взрослой женщины должно быть – от 3,7 до 4,7х10 12 /л., эритроцитов в крови у взрослого мужчины должно быть от 4,0 до 5,0х10 12 /л.

Большое количество в крови эритроцитов и гематокрита (см. ниже) говорит об эритроцитозе. Эритроцитоз может быть первичным (при первичной эритроцитемии) или вторичным (обычно встречается при кислородном голодании тканей). Ярко выраженная (от 8,0до 12,0х10 12 /л и более) первичная эритроцитемия почти всегда сопутствует эритремии – одной из форм лейкоза.

Увеличение эритроцитов в крови

Увеличение эритроцитов в крови наблюдается при:

  • врожденных пороках сердца;
  • молекулярных изменениях гемоглобина в крови (в особенности, накоплении карбоксигемоглобина);
  • легочных заболеваниях;
  • пребывании на высоте.

Уменьшение эритроцитов в крови

Уменьшение эритроцитов в крови (такой признак, как низкий уровень содержания гемоглобина в крови прежде всего сигнализирует именно о низком содержании эритроцитов в крови) наблюдается при:

Ускоренном разрушении в крови эритроцитов;

Кровопотере (при этом строение самих клеток остается нормальным);

Снижении скорости размножения эритроцитов в костном мозге;

Беременности (в последних триместрах);

Гипергидратации.



Эритропоэз. Созревание нормальных красных кровяных телец, т.е. нормобластный эритропоэз, проходит следующие этапы: уменьшение размеров нормобластов, сокращение их ядер с конденсацией (сгущением) хроматина, постепенное исчезновение ядер, утрата цитоплазматической РНК и параллельная продукция гемоглобина. Между пронормобластом и поздним нормобластом совершаются три митотических деления, и каждый интервал между митозами, необходимый для нормальной этапной дифференцировки, равен 16 ч. После кровотечений или при гемолитической анемии эти интервалы сокращаются, что сопровождается повышением количества эритроцитов. Снижение митотической активности приводит к увеличению размеров эритроцитов (макроцитозу), что встречается при мегалобластной (макроцитарной) анемии. Повышение митотической активности сопровождается уменьшением размеров эритроцитов (микроцитозом), что наблюдается, например, при железодефицитной анемии.

Непосредственным предшественником терминальной формы эритропоэтической дифференцировки является ретикулоцит. Именно эта клетка проходит через все стадии исчезновения ядра из цитоплазмы (безъядерными являются эритроциты только человека и млекопитающих). Созревание ретикулоцита до терминального эритроцита занимает 48-72 ч и последние 24 ч происходит в циркулирующей крови. Ретикулоциты содержат полирибосомы, РНК и митохондрии. Они способны синтезировать гемоглобин, что обеспечивает диффузную базофилию их цитоплазмы при окраске мазков по методике Романовского-Гимзы (Д.Л.Романовский, G.Giemsa). Ретикулоциты успешно выявляются и при суправитальных окрасках, т.е. прижизненных окрасках нефиксированных клеток азуром В или крезиловым синим. Однако в настоящее время эти методики «вытесняются» проточной цитометрией с окраской РНК флюорофорами. Количество ретикулоцитов в периферической крови обычно выражают в процентах от общего количества эритроцитов. У взрослого человека оно колеблется в пределах 0,5-2,0 %, однако более информативными являются данные об абсолютном содержании ретикулоцитов (в норме у взрослых 25-75 х 10/л). Подсчет количества ретикулоцитов дает представление об активности эритропоэза. Содержание ретикулоцитов в крови возрастает при кровопотерях, гемолизе различного происхождения, а также в ответ на гемотерапию (использование при лечении переливаний крови, ее компонентов или изготовленных из нее препаратов). Уменьшение количества ретикулоцитов связано с недостаточной функцией костного мозга или неэффективным эритропоэзом.

Контроль за эритропоэзом осуществляет эритропоэтин, который определяет темп перехода эритроидных предшественников КОЭ-Э в нормобласты (проэритробласты). Этот фактор вырабатывается в почках, но некоторое его количество продуцируется также в печени и селезенке. Помимо контроля за темпом воспроизводства нормобластов, эритропоэтин влияет на скорость созревания (терминальной дифференцировки) эритроцитов, синтез гемоглобина и проникновение эритроцитов в кровоток. Тироксин (гормон щитовидной железы), гормон роста и андрогены стимулируют продукцию эритропоэтина.

Кроме подсчета количества ретикулоцитов, в оценке состояния и функции костного мозга, в частности эритропоэза, важную роль играют: подсчет клеток эритроидного ряда в трепанобиоптате и феррокинетические исследования (оценка содержания железа после введения 52-61Fe, т.е. железа с радиоактивной меткой). Плазменный клиренс железа, т.е. скорость освобождения трансферринсвязанного железа из плазмы, и параллельное определение содержания железа в плазме дают возможность оценить суточный оборот этого элемента (в норме 72-144 мкмоль/л). Последний показатель отражает общий объем эритропоэтической ткани, как действующей, так и нефункционирующей. Повторное появление радиоактивного железа в циркулирующих эритроцитах свидетельствует о действующем эритропоэзе. В норме 70-80 % вводимого в организм железа используется эритроцитами и может быть определено через 7- 9 сут после инъекции. Зоны эритропоэза могут быть продемонстрированы с помощью приборов для подсчета радиоактивного излучения, помещаемых над селезенкой, печенью и крестцом.

Важнейшие признаки эритроцитов. Нормальные эритроциты. Состояние и функции этих эритроцитов оценивают путем определения их количества (RBC) в периферической крови, гематокритного числа (PCV, см. выше) и концентрации гемоглобина (Нb). Средние величины этих показателей приведены в табл. 12.1, для каждого из них приведены интервалы возможных индивидуальных колебаний, на которые влияют возраст, пол и атмосферное давление, убывающее по мере увеличения высоты над уровнем моря.

Таблица 12.1. Нормальные показатели для эритроцитов (в средних величинах ± стандартные отклонения)

Количественно размеры эритроцитов и содержание в них гемоглобина можно определить при аппаратном измерении этих клеток для вычисления их среднего объема (MCV), средней массы гемоглобина в каждом эритроците (МСН) и средней концентрации гемоглобина в каждом эритроците (МСНС). Первый показатель (MCV) определяется в результате деления гематокритного числа, выраженного в процентах, на количество эритроцитов в 1 л, помноженное на 10; выражается в фемтолитрах (fl, фл, т.е. в единицах, равных 1(Г л). Второй показатель (МСН) вычисляется при делении концентрации гемоглобина (г/л) на число эритроцитов в 1 л (х10); выражается в пикограммах (pg, пг, т.е. в единицах, равных 10г). Третий показатель (МСНС) получается путем деления концентрации гемоглобина (г/л) на гематокритное число (%) и выражается в г/л. В норме величины всех трех показателей варьируют в следующих пределах:

MCV = 80-100 фл, MCH = 27-32 пг, МСНС = 300-360 г/л. На эти величины не влияют ни возраст, ни пол, ни атмосферное давление, их определяют с помощью автоматизированных электронных счетчиков. Именно такие параметры, как MCV и МСН, лежат в основе морфологической классификации анемий. Так, нормальные величины MCV и МСН характерны для нормохромных (нормоцитарных), а низкие величины - для гипохромных (микроцитарных) анемий. В то же время нормохромные, но макроцитарные анемии характеризуются высокими значениями MCV и нормальными МСН (см. ниже).

Эритроциты человека неодинаковы по объему. Величина их среднего объема (MCV) дает важные сведения о главных видах патологии эритроцитов, но не способствует учету некоторых вариантов. При использовании автоматизированных счетчиков показатели распределения объема эритроцитов (RDW) отражаются на экране графически или в цифрах с указанием стандартных (квадратичных) отклонений или вариационных коэффициентов. В частности, RDW могут показать наличие или отсутствие анизоцитоза (измененного объема эритроцитов), который увеличивается при железодефицитной и макроцитарной (мегалобластной) анемиях.

Морфологические изменения эритроцитов. В норме размеры и форма эритроцитов человека колеблются в незначительных пределах. Красные кровяные тельца - это двояковогнутые дискоидные клетки (дискоциты) со средним диаметром 7,0 мкм. При определении их диаметра под обычным микроскопом ориентируются на ядра малых лимфоцитов, служащие эквивалентом диаметра. Из-за двояковогнутого строения дискоциты сильнее воспринимают окраску по периферии цитоплазмы (иными словами, периферия более оксифильна, нежели центр эритроцита). При нормохромии (нормальном окрашивании) размер более бледной центральной зоны не должен превышать площади дискоцита.

Анемии часто сопровождаются изменениями размеров (анизоцитозом) и формы (пойкилоцитозом) эритроцитов. Ненормально крупные эритроциты (макроциты) в большом количестве встречаются при мегалобластной, гипопластической (апластической) анемиях и болезнях печени. Ненормально мелкие эритроциты характерны для железодефицитной, гемолитической микросфероцитарной анемиях, (3-талассемии (см. ниже). Пойкилоцитоз встречается при каждой тяжелой форме анемии, но особенно выражен у больных мегалобластной анемией (рис. 12.1). Механическое повреждение эритроцитов, происходящее при микроангиопатической гемолитической анемии, приводит к фрагментации этих клеток на полулунные, колбовидные и прочие формы. У людей со сфероцитозом эритроциты имеют шаровидную, а не дискоидную форму, уменьшены в объеме и окрашиваются с одинаковой интенсивностью по всей площади цитоплазмы. Другие возможные измененные формы эритроцитов - серповидные, овальные, палочковидные. При гипохромии отмечается кольцевидное окрашивание эритроцитов (только по краю цитоплазмы), что характерно для железодефицитной анемии, но встречается также при сидеробластных анемиях, талассемиях и анемиях, сопровождающих хронические инфекции. Диморфизм эритроцитов свидетельствует о наличии смеси нормохромных и гипохромных красных кровяных телец, возникает в ответ на лечение железодефицитной анемии, переливание нормальной крови больному с гипохромной анемией, а также при сидеробластных анемиях.

Внутриклеточные включения эритроцитов могут представлять собой остатки и части клеток-предшественников, существовавших на более ранних этапах дифференцировки, а также быть признаками патологических изменений. В нормальной селезенке макрофаги обычно удаляют включения из эритроцитов без малейшего их повреждения - процесс, происходящий в красной пульпе, называют pitting («вынимание фруктовых косточек») [по MacSween R.N.M., Whaley К., 1994]. Если селезенка удалена или подверглась атрофии, то эритроциты с включениями циркулируют в кровотоке в большом количестве. В сидеробластах костного мозга располагаются интенсивно окрашенные базофильные гранулы, дающие реакцию на берлинскую лазурь и, следовательно, содержащие железо. Это мелкие тельца Паппенгейма (A.Pappenheim) с диаметром 1 мкм. При мегалобластных и гемолитических анемиях в эритроцитах содержатся гранулы ядерного хроматина диаметром 1-2 мкм, иногда более известные как тельца Хауэлла-Джолли (F.Howell, G.Jolly) (рис. 12.1). У лиц, подвергшихся спленэктомии, а также больных гемоглобинопатиями или гемолитической анемией, вызванной химикатами, при суправитальном окрашивании мазков крови (см. выше) обнаруживаются эритроциты с преципитатами метгемоглобина (окисленного гемоглобина). Частицы денатурированного глобина называют тельцами Гейнца (R.Heinz) (рис.12.1). Наконец, при инфекциях и гемолитических анемиях, вызванных лекарственными препаратами и химическими соединениями, а также при хронических отравлениях свинцом и миелодиспластических состояниях в эритроцитах, окрашенных по Романовскому-Гимзе, можно видеть множество мелких синих гранул (групп РНК) - это пятнистая базофилия эритроцитов.

Дыхательная функция эритроцитов. Ткани человека, находящегося в состоянии покоя, потребляют около 200 мл кислорода в 1 мин. При физической нагрузке это количество может возрастать в десятки раз. Функции переносчика кислорода из легких в ткани, а также углекислоты от тканей к легким выполняет гемоглобин. У взрослого человека его обозначают как НЬА («А» - от англ. adult - взрослый). В одном эритроците содержится около 340 х 10 молекул гемоглобина, каждая из которых состоит из тысяч различных атомов. Атом железа располагается в центре пигментной молекулы гема, придающей крови красный цвет. Гем - небелковая часть молекулы гемоглобина, протопорфирин, комплексно связанный с ионом двухвалентного железа. Он и переносит кислород. Четыре молекулы гема обернуты полипептидными цепями, которые все вместе представляют собой белковую часть молекулы - глобин.

Кроме основного гемоглобина НЬА, (или НЬА), в нормальной крови взрослого человека имеются разновидности НЬА2 и HbF (фетальный гемоглобин), самостоятельное функциональное значение которых минимально. При патологии строение молекул гемоглобина может значительно изменяться главным образом за счет замены аминокислот. Известно множество типов аномального гемоглобина (HbH, Hbl, HbS и др.).

Эритроцитоз. Продукция эритропоэтина с последующим повышением количества эритроцитов в периферической крови, т.е. эритроцитозом, стимулируется хронической гипоксией. Последняя возникает при хронической легочной или сердечной недостаточности, врожденных пороках сердца, а также при продолжительной жизни в условиях сниженного атмосферного давления. Такой эритроцитоз имеет компенсаторный характер. Изредка он возникает в результате избыточной продукции эритропоэтина при определенных поражениях почек или печени - карциномах, кистах или ишемических повреждениях.

Все перечисленные выше варианты называют вторичной полицитемией, так как есть еще и первичная, или истинная, полицитемия - опухолевое поражение эритроцитарного ряда костного мозга.

Синтез эритроцитов - один из наиболее мощных процессов образования клеток в организме. Каждую секунду в норме образуется примерно 2 млн эритроцитов, в день - 173 млрд, в год - 63 триллиона. Если перевести эти значения в массу, то ежедневно образуется около 140 г эритроцитов, каждый год - 51 кг, а масса эритроцитов, образованных в организме за 70 лет составляет порядка 3,5 тонн.

У взрослого человека эритропоэз происходит в костном мозге плоских костей, тогда как у плода островки кроветворения находятся в печени и селезёнке (экстрамедуллярное кроветворение). При некоторых патологических состояниях (талассемия, лейкозы и др.) очаги экстрамедуллярного кроветворения могут быть обнаружены и у взрослого человека.

Одним из важных элементов клеточного деления является витамин В₁₂ , необходимый для синтеза ДНК, являясь, по сути, катализатором этой реакции. В процессе синтеза ДНК витамин В₁₂ не расходуется, а циклично вступает в реакции как активное вещество; в результате такого цикла из уридин-монофосфата образуется тимидин-монофосфат. При снижении уровня витамина В₁₂ уридин плохо включается в состав молекулы ДНК, что и приводит к многочисленным нарушениям, в частности нарушению созревания клеток крови.

Еще одним фактором, оказывающим влияние на делящиеся клетки, является фолиевая кислота . Она как кофермент, в частности, участвует в синтезе пуриновых и пиримидиновых нуклеотидов.

Общая схема постэмбрионального гемопоэза

Гемопоэз (кроветворение) - очень динамичная, четко сбалансированная, непрерывно обновляющаяся система. Единым родоначальником кроветворения является стволовая клетка. По современным представлениям, это целый класс клеток, закладывающихся в онтогенезе, главным свойством которых является способность давать все ростки кроветворения - эритроцитарный, мегакариоцитарный, гранулоцитарный (эозинофилы, базофилы, нейтрофилы), моноцитарно-макрофагальный, Т-лимфоцитарный, В-лимфоцитарный.

В результате нескольких делений клетки теряют способность быть универсальными родоначальниками и превращаются в полипотентные клетки. Такой, например, является клетка-предшественница миелопоэза (эритроциты, мегакариоциты, гранулоциты). Еще через несколько делений вслед за универсальностью исчезает и полипотентность, клетки становятся унипотентными (ˮуниˮ - единственное), то есть способными к дифференцированию только в одном направлении.

Наиболее делящимися в костном мозге являются клетки - предшественники миелопоэза (см. рисунок ⭡), по мере дифференцировки уменьшается количество оставшихся делений, и морфологически различаемые клетки красной крови постепенно перестают делиться.

Дифференцировка клеток эритроидного ряда

Собственно эритроидный ряд клеток (эритрон) начинается с унипотентных бурстобразующих клеток, являющихся потомками клеток-предшественниц миелопоэза. Бурстобразующие клетки в культуре тканей растут мелкими колониями, напоминающими взрыв (бурст). Для их созревания необходим специальный медиатор - бурстпромоторная активность. Это фактор влияния микроокружения на созревающие клетки, фактор межклеточного взаимодействия.

Выделяют две популяции бурстобразующих клеток: первая регулируется исключительно бурстпромоторной активностью, вторая - становится чувствительной к воздействию эритропоэтина. Во второй популяции начинается синтез гемоглобина , продолжающийся в эритропоэтин-чувствительных клетках и в последующих созревающих клетках.

На этапе бурстобразующих клеток происходит принципиальное изменение клеточной активности - от деления к синтезу гемоглобина. В последующих клетках деление приостанавливается (последняя клетка в этом ряду, способная к делению, - полихроматофильный эритробласт), ядро уменьшается в абсолютном размере и по отношению к объему цитоплазмы, в которой идет синтез веществ. На последнем этапе ядро из клетки удаляется, затем исчезают остатки РНК; их можно еще обнаружить при специальной окраске в молодых эритроцитах - ретикулоцитах, но нельзя найти в зрелых эритроцитах.

Cхема основных этапов дифференцировки клеток эритроидного ряда выглядит следующим образом:
плюрипотентная стволовая клетка ⭢ бурстобразующая единица эритроидного ряда (БОЕ-Э) ⭢ колониеобразующая единица эритроидного ряда (КОЕ-Э) ⭢ эритробласт ⭢ пронормоцит ⭢ базофильный нормоцит ⭢ полихроматический нормоцит ⭢ ортохроматический (оксифильный) нормоцит ⭢ ретикулоцит ⭢ эритроцит .

Регуляция эритропоэза

Процессы регуляции кроветворения до сих пор изучены недостаточно. Необходимость непрерывно поддерживать гемопоэз, адекватно удовлетворять потребности организма в различных специализированных клетках, обеспечивать постоянство и равновесие внутренней среды (гомеостаз) - всё это предполагает существование сложных регуляторных механизмов, действующих по принципу обратной связи.

Наиболее известным гуморальным фактором регуляции эритропоэза, является гормон эритропоэтин . Это стресс-фактор, синтезирующийся в различных клетках и в различных органах. Большее количество его образуется в почках, однако даже при их отсутствии эритропоэтин вырабатывается эндотелием сосудов, печенью. Уровень эритропоэтина стабилен и изменяется в сторону повышения при резкой и обильной кровопотере, остром гемолизе , при подъеме в горы, при острой ишемии почек. Парадоксально, что при хронических анемиях уровень эритропоэтина обычно нормален, за исключением апластической анемии, где его уровень стабильно чрезвычайно высок.

Наряду с эритропоэтином, в крови присутствуют также ингибиторы эритропоэза. Это большое число разнообразных веществ, часть из которых может быть отнесена к среднемолекулярным токсинам, накапливающимся вследствие патологических процессов, связанных с повышенным их образованием либо нарушением их выведения.

На ранних этапах дифференцировки регуляция в эритроне осуществляется в основном за счёт факторов клеточного микроокружения, а позже - при балансе активности эритропоэтина и ингибиторов эритропоэза. В острых ситуациях, когда необходимо быстро создать большое число новых эритроцитов, включается стрессовый эритропоэтиновый механизм - резкое преобладание активности эритропоэтина над активностью ингибиторов эритропоэза. В патологических ситуациях, напротив, ингибиторная активность может преобладать над эритропоэтиновой, что приводит к торможению эритропоэза.

Синтез гемоглобина

В состав гемоглобина входит железо. Недостаточное количество этого элемента в организме может привести к развитию анемии (см. Железодефицитная анемия). Имеется зависимость между возможностью синтезировать определённое количество гемоглобина (что обусловлено запасами железа) и эритропоэза - по всей вероятности, существует пороговое значение концентрации гемоглобина, без которой эритропоэз прекращается.

Синтез гемоглобина начинается в эритроидных предшественниках на этапе образования эритропоэтин-чувствительной клетки. У плода, а затем и в раннем послеродовом периоде у ребёнка образуется гемоглобин F, а далее, в основном, - гемоглобин А. При напряжении эритропоэза (гемолиз, кровотечение) в крови взрослого человека может появляться некоторое количество гемоглобина F.

Гемоглобин состоит из двух вариантов глобиновых цепей а и р, окружающих гем, содержащий железо. В зависимости от изменения последовательностей аминокислотных остатков в цепях глобина изменяются химикофизические свойства гемоглобина, в определённых условиях он может кристаллизоваться, становиться нерастворимым (например гемоглобин S при серповидно-клеточной анемии).

Свойства эритроцитов

Эритроциты обладают несколькими свойствами. Наиболее известным является транспорт кислорода (O₂) и углекислого газа (CO₂). Он осуществляется гемоглобином, который связывается поочередно с одним и другим газом в зависимости от напряжения соответствующего газа в окружающей среде: в лёгких - кислорода, в тканях - углекислого газа. Химизм реакции заключается в вытеснении и замещении одного газа другим из связи с гемоглобином. Кроме того, эритроциты являются переносчиками оксида азота (NO), ответственного за сосудистый тонус, а также участвующего в передаче клеточных сигналов и многих других физиологических процессах.

Эритроциты обладают свойством изменять свою форму, проходя через капилляры малого диаметра. Клетки распластываются, закручиваются в спираль. Пластичность эритроцитов зависит от различных факторов, в том числе от строения мембраны эритроцита, от вида содержащегося в нём гемоглобина, от цитоскелета. Кроме того, эритроцитарная мембрана окружена своего рода ˮоблакомˮ из различных белков, которые могут менять деформируемость. К ним относятся иммунные комплексы, фибриноген. Эти вещества меняют заряд мембраны эритроцита, прикрепляются к рецепторам, ускоряют оседание эритроцитов в стеклянном капилляре.

В случае тромбообразования эритроциты являются центрами образования фибриновых тяжей, это может не только изменять деформируемость, вызывать их агрегацию, слипание в монетные столбики, но и разрывать эритроциты на фрагменты, отрывать от них куски мембран.

Реакция оседания эритроцитов (РОЭ) отражает наличие на их поверхности заряда, отталкивающего эритроциты друг от друга. Появление при воспалительных реакциях, при активации свертывания и т.д. вокруг эритроцита диэлектрического облака приводит к уменьшению сил отталкивания, в результате чего эритроциты начинают быстрее оседать в вертикально поставленном капилляре. Если капилляр наклонить на 45°, то силы отталкивания действуют только на протяжении прохождения эритроцитами поперечника просвета капилляра. Когда клетки достигают стенки, они скатываются по ней, не встречая сопротивления. В результате в наклонённом капилляре показатель оседания эритроцитов увеличивается десятикратно.

Источники:
1. Анемический синдром в клинической практике / П.А. Воробьёв, - М., 2001;
2. Гематология: Новейший справочник / Под ред. К.М. Абдулкадырова. - М., 2004.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Про деток, от рождения до школы