Про деток, от рождения до школы

Теория:

При решении неравенств используют следующие правила:

1. Любой член неравенства можно перенести из одной части
неравенства в другую с противоположным знаком, при этом знак неравенства не меняется.

2. Обе части неравенства можно умножить или разделить на одно
и то же положительное число, не изменив при этом знак неравенства.

3. Обе части неравенства можно умножить или разделить на одно
и то же отрицательное число, изменив при этом знак неравенства на
противоположный.

Решить неравенство − 8 x + 11 < − 3 x − 4
Решение.

1. Перенесём член − 3 x в левую часть неравенства, а член 11 — в правую часть неравенства, при этом поменяем знаки на противоположные у − 3 x и у 11 .
Тогда получим

− 8 x + 3 x < − 4 − 11

− 5 x < − 15

2. Разделим обе части неравенства − 5 x < − 15 на отрицательное число − 5 , при этом знак неравенства < , поменяется на > , т.е. мы перейдём к неравенству противоположного смысла.
Получим:

− 5 x < − 15 | : (− 5 )

x > − 15 : (− 5 )

x > 3

x > 3 — решение заданного неравенства.

Обрати внимание!

Для записи решения можно использовать два варианта: x > 3 или в виде числового промежутка.

Отметим множество решений неравенства на числовой прямой и запишем ответ в виде числового промежутка.

x ∈ (3 ; + ∞ )

Ответ: x > 3 или x ∈ (3 ; + ∞ )

Алгебраические неравенства.

Квадратные неравенства. Рациональные неравенства высших степеней.

Методы решения неравенств зависят в основном от того, к какому классу относятся функции, составляющие неравенство.

  1. I . Квадратные неравенства , то есть неравенства вида

ax 2 + bx + c > 0 (< 0), a ≠ 0.

Чтобы решить неравенство можно:

  1. Квадратный трехчлен разложить на множители, то есть неравенство записать в виде

a (x - x 1) (x - x 2) > 0 (< 0).

  1. Корни многочлена нанести на числовую ось. Корни разбивают множество действительных чисел на промежутки, в каждом из которых соответствующая квадратичная функция будет знакопостоянной.
  2. Определить знак a (x - x 1) (x - x 2) в каждом промежутке и записать ответ.

Если квадратный трехчлен не имеет корней, то при D<0 и a>0 квадратный трехчлен при любом x положителен.

  • Решить неравенство. x 2 + x - 6 > 0.

Разложим квадратный трехчлен на множители (x + 3) (x - 2) > 0

Ответ: x (-∞; -3) (2; +∞).

2) (x - 6) 2 > 0

Это неравенство верно при любом х, кроме х = 6.

Ответ: (-∞; 6) (6; +∞).

3) x² + 4x + 15 < 0.

Здесь D < 0, a = 1 > 0. Квадратный трехчлен положителен при всех х.

Ответ: x Î Ø.

Решить неравенства:

  1. 1 + х - 2х² < 0. Ответ:
  2. 3х² - 12х + 12 ≤ 0. Ответ:
  3. 3х² - 7х + 5 ≤ 0. Ответ:
  4. 2х² - 12х + 18 > 0. Ответ:
  5. При каких значениях a неравенство

x² - ax > выполняется для любых х? Ответ:

  1. II . Рациональные неравенства высших степеней, то есть неравенства вида

a n x n + a n-1 x n-1 + … + a 1 x + a 0 > 0 (<0), n>2.

Многочлен высшей степени следует разложить на множители, то есть неравенство записать в виде

a n (x - x 1) (x - x 2) ·…· (x - x n) > 0 (<0).

Отметить на числовой оси точки, в которых многочлен обращается в нуль.

Определить знаки многочлена на каждом промежутке.

1) Решить неравенство x 4 - 6x 3 + 11x 2 - 6x < 0.

x 4 - 6x 3 + 11x 2 - 6x = x (x 3 - 6x 2 + 11x -6) = x (x 3 - x 2 - 5x 2 + 5x +6x - 6) =x (x - 1)(x 2 -5x + 6) =

x (x - 1) (x - 2) (x - 3). Итак, x (x - 1) (x - 2) (x - 3)<0

Ответ: (0; 1) (2; 3).

2) Решить неравенство (x -1) 5 (x + 2) (x - ½) 7 (2x + 1) 4 <0.

Отметим на числовой оси точки, в которых многочлен обращается в нуль. Это х = 1, х = -2, х = ½, х = - ½.

В точке х = - ½ смены знака не происходит, потому что двучлен (2х + 1) возводится в четную степень, то есть выражение (2x + 1) 4 не меняет знак при переходе через точку х = - ½.

Ответ: (-∞; -2) (½; 1).

3) Решить неравенство: х 2 (х + 2) (х - 3) ≥ 0.

Данное неравенство равносильно следующей совокупности

Решением (1) является х (-∞; -2) (3; +∞). Решением (2) являются х = 0, х = -2, х = 3. Объединяя полученные решения, получаем х Î (-∞; -2] {0} {0}

Где в роли $b$ может быть обычное число, а может быть и что-нибудь пожёстче. Примеры? Да пожалуйста:

\[\begin{align} & {{2}^{x}} \gt 4;\quad {{2}^{x-1}}\le \frac{1}{\sqrt{2}};\quad {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,1}^{1-x}} \lt 0,01;\quad {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}. \\\end{align}\]

Думаю, смысл понятен: есть показательная функция ${{a}^{x}}$, её с чем-то сравнивают, а затем просят найти $x$. В особо клинических случаях вместо переменной $x$ могут засунуть какую-нибудь функцию $f\left(x \right)$ и тем самым чуть-чуть усложнить неравенство.:)

Конечно, в некоторых случаях неравенство может выглядеть более сурово. Вот, например:

\[{{9}^{x}}+8 \gt {{3}^{x+2}}\]

Или даже вот:

В целом, сложность таких неравенств может быть самой разной, но в итоге они всё равно сводятся к простой конструкции ${{a}^{x}} \gt b$. А уж с такой конструкцией мы как-нибудь разберёмся (в особо клинических случаях, когда ничего не приходит в голову, нам помогут логарифмы). Поэтому сейчас мы научимя решать такие простые конструкции.

Решение простейших показательных неравенств

Рассмотрим что-нибудь совсем простое. Например, вот это:

\[{{2}^{x}} \gt 4\]

Очевидно, что число справа можно переписать в виде степени двойки: $4={{2}^{2}}$. Таким образом, исходное неравенство перепишется в очень удобной форме:

\[{{2}^{x}} \gt {{2}^{2}}\]

И вот уже руки чешутся «зачеркнуть» двойки, стоящие в основаниях степеней, дабы получить ответ $x \gt 2$. Но перед тем как что там зачёркивать, давайте вспомним степени двойки:

\[{{2}^{1}}=2;\quad {{2}^{2}}=4;\quad {{2}^{3}}=8;\quad {{2}^{4}}=16;...\]

Как видим, чем большее число стоит в показателе степени, тем больше получается число на выходе. «Спасибо, кэп!» — воскликнет кто-нибудь из учеников. Разве бывает по-другому? К сожалению, бывает. Например:

\[{{\left(\frac{1}{2} \right)}^{1}}=\frac{1}{2};\quad {{\left(\frac{1}{2} \right)}^{2}}=\frac{1}{4};\quad {{\left(\frac{1}{2} \right)}^{3}}=\frac{1}{8};...\]

Тут тоже всё логично: чем больше степень, тем больше раз число 0,5 умножается само на себя (т.е. делится пополам). Таким образом, полученная последовательность чисел убывает, а разница между первой и второй последовательностью состоит лишь в основании:

  • Если основание степени $a \gt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ тоже будет расти;
  • И наоборот, если $0 \lt a \lt 1$, то по мере роста показателя $n$ число ${{a}^{n}}$ будет убывать.

Суммируя эти факты, мы получаем самое главное утверждение, на котором и основано всё решение показательных неравенств:

Если $a \gt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \gt n$. Если $0 \lt a \lt 1$, то неравенство ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $x \lt n$.

Другими словами, если основание больше единицы, его можно просто убрать — знак неравенства при этом не поменяется. А если основание меньше единицы, то его тоже можно убрать, но при этом придётся поменять и знак неравенства.

Обратите внимание: мы не рассмотрели варианты $a=1$ и $a\le 0$. Потому что в этих случаях возникает неопределённость. Допустим, как решить неравенство вида ${{1}^{x}} \gt 3$? Единица в любой степени снова даст единицу — мы никогда не получим тройку или больше. Т.е. решений нет.

С отрицательными основаниями всё ещё интереснее. Рассмотрим для примера вот такое неравенство:

\[{{\left(-2 \right)}^{x}} \gt 4\]

На первый взгляд, всё просто:

Правильно? А вот и нет! Достаточно подставить вместо $x$ парочку чётных и парочку нечётных чисел, чтобы убедиться что решение неверно. Взгляните:

\[\begin{align} & x=4\Rightarrow {{\left(-2 \right)}^{4}}=16 \gt 4; \\ & x=5\Rightarrow {{\left(-2 \right)}^{5}}=-32 \lt 4; \\ & x=6\Rightarrow {{\left(-2 \right)}^{6}}=64 \gt 4; \\ & x=7\Rightarrow {{\left(-2 \right)}^{7}}=-128 \lt 4. \\\end{align}\]

Как видите, знаки чередуются. А ведь есть ещё дробные степени и прочая жесть. Как, например, прикажете считать ${{\left(-2 \right)}^{\sqrt{7}}}$ (минус двойка в степени корень из семи)? Да никак!

Поэтому для определённости полагают, что во всех показательных неравенствах (и уравнениях, кстати, тоже) $1\ne a \gt 0$. И тогда всё решается очень просто:

\[{{a}^{x}} \gt {{a}^{n}}\Rightarrow \left[ \begin{align} & x \gt n\quad \left(a \gt 1 \right), \\ & x \lt n\quad \left(0 \lt a \lt 1 \right). \\\end{align} \right.\]

В общем, ещё раз запомните главное правило: если основание в показательном уравнении больше единицы, его можно просто убрать; а если основание меньше единицы, его тоже можно убрать, но при этом поменяется знак неравенства.

Примеры решения

Итак, рассмотрим несколько простых показательных неравенств:

\[\begin{align} & {{2}^{x-1}}\le \frac{1}{\sqrt{2}}; \\ & {{0,1}^{1-x}} \lt 0,01; \\ & {{2}^{{{x}^{2}}-7x+14}} \lt 16; \\ & {{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}. \\\end{align}\]

Первостепенная задача во всех случаях одна и та же: свести неравенств к простейшему виду ${{a}^{x}} \gt {{a}^{n}}$. Именно это мы сейчас и сделаем с каждым неравенством, а заодно повторим свойства степеней и показательной функции. Итак, поехали!

\[{{2}^{x-1}}\le \frac{1}{\sqrt{2}}\]

Что здесь можно сделать? Ну, слева у нас и так стоит показательное выражение — ничего менять не надо. А вот справа стоит какая-то хрень: дробь, да ещё и в знаменателе корень!

Однако вспомним правила работы с дробями и степенями:

\[\begin{align} & \frac{1}{{{a}^{n}}}={{a}^{-n}}; \\ & \sqrt[k]{a}={{a}^{\frac{1}{k}}}. \\\end{align}\]

Что это значит? Во-первых, мы легко можем избавиться от дроби, превратив её в степень с отрицательным показателем. А во-вторых, поскольку в знаменателе стоит корень, было бы неплохо превратить и его в степень — на этот раз с дробным показателем.

Применим эти действия последовательно к правой части неравенства и посмотрим, что получится:

\[\frac{1}{\sqrt{2}}={{\left(\sqrt{2} \right)}^{-1}}={{\left({{2}^{\frac{1}{3}}} \right)}^{-1}}={{2}^{\frac{1}{3}\cdot \left(-1 \right)}}={{2}^{-\frac{1}{3}}}\]

Не забываем, что при возведении степени в степень показатели этих степеней складываются. И вообще, при работе с показательными уравнениями и неравенствами совершенно необходимо знать хотя бы простейшие правила работы со степенями:

\[\begin{align} & {{a}^{x}}\cdot {{a}^{y}}={{a}^{x+y}}; \\ & \frac{{{a}^{x}}}{{{a}^{y}}}={{a}^{x-y}}; \\ & {{\left({{a}^{x}} \right)}^{y}}={{a}^{x\cdot y}}. \\\end{align}\]

Собственно, последнее правило мы только что и применили. Поэтому наше исходное неравенство перепишется следующим образом:

\[{{2}^{x-1}}\le \frac{1}{\sqrt{2}}\Rightarrow {{2}^{x-1}}\le {{2}^{-\frac{1}{3}}}\]

Теперь избавляемся от двойки в основании. Поскольку 2 > 1, знак неравенства останется прежним:

\[\begin{align} & x-1\le -\frac{1}{3}\Rightarrow x\le 1-\frac{1}{3}=\frac{2}{3}; \\ & x\in \left(-\infty ;\frac{2}{3} \right]. \\\end{align}\]

Вот и всё решение! Основная сложность — вовсе не в показательной функции, а в грамотном преобразовании исходного выражения: нужно аккуратно и максимально быстро привести его к простейшему виду.

Рассмотрим второе неравенство:

\[{{0,1}^{1-x}} \lt 0,01\]

Так, так. Тут нас поджидают десятичные дроби. Как я уже много раз говорил, в любых выражениях со степенями следует избавляться от десятичных дробей — зачастую только так можно увидеть быстрое и простое решение. Вот и мы избавимся:

\[\begin{align} & 0,1=\frac{1}{10};\quad 0,01=\frac{1}{100}={{\left(\frac{1}{10} \right)}^{2}}; \\ & {{0,1}^{1-x}} \lt 0,01\Rightarrow {{\left(\frac{1}{10} \right)}^{1-x}} \lt {{\left(\frac{1}{10} \right)}^{2}}. \\\end{align}\]

Перед нами вновь простейшее неравенство, да ещё и с основанием 1/10, т.е. меньшим единицы. Что ж, убираем основания, попутно меняя знак с «меньше» на «больше», и получаем:

\[\begin{align} & 1-x \gt 2; \\ & -x \gt 2-1; \\ & -x \gt 1; \\& x \lt -1. \\\end{align}\]

Получили окончательный ответ: $x\in \left(-\infty ;-1 \right)$. Обратите внимание: ответом является именно множество, а ни в коем случае не конструкция вида $x \lt -1$. Потому что формально такая конструкция — это вовсе не множество, а неравенство относительно переменной $x$. Да, оно очень простое, но это не ответ!

Важное замечание . Данное неравенство можно было решить и по-другому — путём приведения обеих частей к степени с основанием, большим единицы. Взгляните:

\[\frac{1}{10}={{10}^{-1}}\Rightarrow {{\left({{10}^{-1}} \right)}^{1-x}} \lt {{\left({{10}^{-1}} \right)}^{2}}\Rightarrow {{10}^{-1\cdot \left(1-x \right)}} \lt {{10}^{-1\cdot 2}}\]

После такого преобразования мы вновь получим показательное неравенство, но с основанием 10 > 1. А это значит, что можно просто зачеркнуть десятку — знак неравенства при этом не поменяется. Получим:

\[\begin{align} & -1\cdot \left(1-x \right) \lt -1\cdot 2; \\ & x-1 \lt -2; \\ & x \lt -2+1=-1; \\ & x \lt -1. \\\end{align}\]

Как видите, ответ получился точь-в-точь такой же. При этом мы избавили себя от необходимости менять знак и вообще помнить какие-то там правила.:)

\[{{2}^{{{x}^{2}}-7x+14}} \lt 16\]

Однако пусть вас это не пугает. Чтобы ни находилось в показателях, технология решения самого неравенства остаётся прежней. Поэтому заметим для начала, что 16 = 2 4 . Перепишем исходное неравенство с учётом этого факта:

\[\begin{align} & {{2}^{{{x}^{2}}-7x+14}} \lt {{2}^{4}}; \\ & {{x}^{2}}-7x+14 \lt 4; \\ & {{x}^{2}}-7x+10 \lt 0. \\\end{align}\]

Ура! Мы получили обычное квадратное неравенство! Знак нигде не менялся, поскольку в основании стоит двойка — число, большее единицы.

Нули функции на числовой прямой

Расставляем знаки функции $f\left(x \right)={{x}^{2}}-7x+10$ — очевидно, её графиком будет парабола ветвями вверх, поэтому по бокам будут «плюсы». Нас интересует та область, где функция меньше нуля, т.е. $x\in \left(2;5 \right)$ — это и есть ответ к исходной задаче.

Наконец, рассмотрим ещё одно неравенство:

\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\]

Опять видим показательную функцию с десятичной дробью в основании. Переводим эту дробь в обыкновенную:

\[\begin{align} & 0,2=\frac{2}{10}=\frac{1}{5}={{5}^{-1}}\Rightarrow \\ & \Rightarrow {{0,2}^{1+{{x}^{2}}}}={{\left({{5}^{-1}} \right)}^{1+{{x}^{2}}}}={{5}^{-1\cdot \left(1+{{x}^{2}} \right)}}\end{align}\]

В данном случае мы воспользовались приведённым ранее замечанием — свели основание к числу 5 > 1, чтобы упростить себе дальнейшее решение. Точно так же поступим и с правой частью:

\[\frac{1}{25}={{\left(\frac{1}{5} \right)}^{2}}={{\left({{5}^{-1}} \right)}^{2}}={{5}^{-1\cdot 2}}={{5}^{-2}}\]

Перепишем исходное неравенство с учётом обоих преобразований:

\[{{0,2}^{1+{{x}^{2}}}}\ge \frac{1}{25}\Rightarrow {{5}^{-1\cdot \left(1+{{x}^{2}} \right)}}\ge {{5}^{-2}}\]

Основания с обеих сторон одинаковы и превосходят единицу. Никаких других слагаемых справа и слева нет, поэтому просто «зачёркиваем» пятёрки и получаем совсем простое выражение:

\[\begin{align} & -1\cdot \left(1+{{x}^{2}} \right)\ge -2; \\ & -1-{{x}^{2}}\ge -2; \\ & -{{x}^{2}}\ge -2+1; \\ & -{{x}^{2}}\ge -1;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}\le 1. \\\end{align}\]

Вот тут надо быть аккуратнее. Многие ученики любят просто извлечь квадратный корень их обеих частей неравенства и записать что-нибудь в духе $x\le 1\Rightarrow x\in \left(-\infty ;-1 \right]$. Делать этого ни в коем случае нельзя, поскольку корень из точного квадрата — это модуль, а ни в коем случае не исходная переменная:

\[\sqrt{{{x}^{2}}}=\left| x \right|\]

Однако работать с модулями — не самое приятное занятие, правда? Вот и мы не будем работать. А вместо этого просто перенесём все слагаемые влево и решим обычное неравенство методом интервалов:

$\begin{align} & {{x}^{2}}-1\le 0; \\ & \left(x-1 \right)\left(x+1 \right)\le 0 \\ & {{x}_{1}}=1;\quad {{x}_{2}}=-1; \\\end{align}$

Вновь отмечаем полученные точки на числовой прямой и смотрим знаки:

Обратите внимание: точки закрашены

Поскольку мы решали нестрогое неравенство, все точки на графике закрашены. Поэтому ответ будет такой: $x\in \left[ -1;1 \right]$ — не интервал, а именно отрезок.

В целом хотел бы заметить, что ничего сложного в показательных неравенствах нет. Смысл всех преобразований, которые мы сегодня выполняли, сводится к простому алгоритму:

  • Найти основание, к которому будем приводить все степени;
  • Аккуратно выполнить преобразования, чтобы получилось неравенство вида ${{a}^{x}} \gt {{a}^{n}}$. Разумеется вместо переменных $x$ и $n$ могут стоять гораздо более сложные функции, но смысл от этого не поменяется;
  • Зачеркнуть основания степеней. При этом может поменяться знак неравенства, если основание $a \lt 1$.

По сути, это универсальный алгоритм решения всех таких неравенств. А всё, что вам ещё будут рассказывать по этой теме — лишь конкретные приёмы и хитрости, позволяющие упростить и ускорить преобразования. Вот об одном из таких приёмов мы сейчас и поговорим.:)

Метод рационализации

Рассмотрим ещё одну партию неравенств:

\[\begin{align} & {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}}; \\ & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1; \\ & {{\left(\frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left(\frac{1}{9} \right)}^{16-x}}; \\ & {{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1. \\\end{align}\]

Ну и что в них такого особенного? Они же лёгкие. Хотя, стоп! Число π возводится в какую-то степень? Что за бред?

А как возвести в степень число $2\sqrt{3}-3$? Или $3-2\sqrt{2}$? Составители задач, очевидно, перепили «Боярышника» перед тем, как сесть за работу.:)

На самом деле ничего страшного в этих задачах нет. Напомню: показательной функцией называется выражение вида ${{a}^{x}}$, где основание $a$ — это любое положительное число, за исключением единицы. Число π положительно — это мы и так знаем. Числа $2\sqrt{3}-3$ и $3-2\sqrt{2}$ тоже положительны — в этом легко убедиться, если сравнить их с нулём.

Получается, что все эти «устрашающие» неравенства ничем не отличаются решаются от простых, рассмотренных выше? И решаются точно так же? Да, совершенно верно. Однако на их примере я хотел бы рассмотреть один приём, который здорово экономит время на самостоятельных работах и экзаменах. Речь пойдёт о методе рационализации. Итак, внимание:

Всякое показательное неравенство вида ${{a}^{x}} \gt {{a}^{n}}$ равносильно неравенству $\left(x-n \right)\cdot \left(a-1 \right) \gt 0$.

Вот и весь метод.:) А вы думали, что будет какая-нибудь очередная дичь? Ничего подобного! Но этот простой факт, записанный буквально в одну строчку, значительно упростит нам работу. Взгляните:

\[\begin{matrix} {{\text{ }\!\!\pi\!\!\text{ }}^{x+7}} \gt {{\text{ }\!\!\pi\!\!\text{ }}^{{{x}^{2}}-3x+2}} \\ \Downarrow \\ \left(x+7-\left({{x}^{2}}-3x+2 \right) \right)\cdot \left(\text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\\end{matrix}\]

Вот и нет больше показательных функций! И не надо помнить: меняется знак или нет. Но возникает новая проблема: что делать с грёбаным множителем \[\left(\text{ }\!\!\pi\!\!\text{ }-1 \right)\]? Мы ведь не знаем, чему равно точное значение числа π. Впрочем, капитан очевидность как бы намекает:

\[\text{ }\!\!\pi\!\!\text{ }\approx 3,14... \gt 3\Rightarrow \text{ }\!\!\pi\!\!\text{ }-1 \gt 3-1=2\]

В общем, точное значение π нас особо-то и не колышет — нам лишь важно понимать, что в любом случае $\text{ }\!\!\pi\!\!\text{ }-1 \gt 2$, т.е. это положительная константа, и мы можем разделить на неё обе части неравенства:

\[\begin{align} & \left(x+7-\left({{x}^{2}}-3x+2 \right) \right)\cdot \left(\text{ }\!\!\pi\!\!\text{ }-1 \right) \gt 0 \\ & x+7-\left({{x}^{2}}-3x+2 \right) \gt 0; \\ & x+7-{{x}^{2}}+3x-2 \gt 0; \\ & -{{x}^{2}}+4x+5 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}-4x-5 \lt 0; \\ & \left(x-5 \right)\left(x+1 \right) \lt 0. \\\end{align}\]

Как видите, в определённый момент пришлось разделить на минус единицу — при этом знак неравенства поменялся. В конце я разложил квадратный трёхчлен по теореме Виета — очевидно, что корни равны ${{x}_{1}}=5$ и ${{x}_{2}}=-1$. Дальше всё решается классическим методом интервалов:

Решаем неравенство методом интервалов

Все точки выколоты, поскольку исходное неравенство строгое. Нас интересует область с отрицательными значениями, поэтому ответ: $x\in \left(-1;5 \right)$. Вот и всё решение.:)

Перейдём к следующей задаче:

\[{{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1\]

Тут вообще всё просто, потому что справа стоит единица. А мы помним, что единица — это любое число в нулевой степени. Даже если этим числом является иррациональное выражение, стоящее в основании слева:

\[\begin{align} & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt 1={{\left(2\sqrt{3}-3 \right)}^{0}}; \\ & {{\left(2\sqrt{3}-3 \right)}^{{{x}^{2}}-2x}} \lt {{\left(2\sqrt{3}-3 \right)}^{0}}; \\\end{align}\]

Что ж, выполняем рационализацию:

\[\begin{align} & \left({{x}^{2}}-2x-0 \right)\cdot \left(2\sqrt{3}-3-1 \right) \lt 0; \\ & \left({{x}^{2}}-2x-0 \right)\cdot \left(2\sqrt{3}-4 \right) \lt 0; \\ & \left({{x}^{2}}-2x-0 \right)\cdot 2\left(\sqrt{3}-2 \right) \lt 0. \\\end{align}\]

Осталось лишь разобраться со знаками. Множитель $2\left(\sqrt{3}-2 \right)$ не содержит переменной $x$ — это просто константа, и нам необходимо выяснить её знак. Для этого заметим следующее:

\[\begin{matrix} \sqrt{3} \lt \sqrt{4}=2 \\ \Downarrow \\ 2\left(\sqrt{3}-2 \right) \lt 2\cdot \left(2-2 \right)=0 \\\end{matrix}\]

Получается, что второй множитель — не просто константа, а отрицательная константа! И при делении на неё знак исходного неравенства поменяется на противоположный:

\[\begin{align} & \left({{x}^{2}}-2x-0 \right)\cdot 2\left(\sqrt{3}-2 \right) \lt 0; \\ & {{x}^{2}}-2x-0 \gt 0; \\ & x\left(x-2 \right) \gt 0. \\\end{align}\]

Теперь всё становится совсем очевидно. Корни квадратного трёхчлена, стоящего справа: ${{x}_{1}}=0$ и ${{x}_{2}}=2$. Отмечаем их на числовой прямой и смотрим знаки функции $f\left(x \right)=x\left(x-2 \right)$:

Случай, когда нас интересуют боковые интервалы

Нас интересуют интервалы, отмеченные знаком «плюс». Осталось лишь записать ответ:

Переходим к следующему примеру:

\[{{\left(\frac{1}{3} \right)}^{{{x}^{2}}+2x}} \gt {{\left(\frac{1}{9} \right)}^{16-x}}\]

Ну, тут совсем всё очевидно: в основаниях стоят степени одного и того же числа. Поэтому я распишу всё кратко:

\[\begin{matrix} \frac{1}{3}={{3}^{-1}};\quad \frac{1}{9}=\frac{1}{{{3}^{2}}}={{3}^{-2}} \\ \Downarrow \\ {{\left({{3}^{-1}} \right)}^{{{x}^{2}}+2x}} \gt {{\left({{3}^{-2}} \right)}^{16-x}} \\\end{matrix}\]

\[\begin{align} & {{3}^{-1\cdot \left({{x}^{2}}+2x \right)}} \gt {{3}^{-2\cdot \left(16-x \right)}}; \\ & {{3}^{-{{x}^{2}}-2x}} \gt {{3}^{-32+2x}}; \\ & \left(-{{x}^{2}}-2x-\left(-32+2x \right) \right)\cdot \left(3-1 \right) \gt 0; \\ & -{{x}^{2}}-2x+32-2x \gt 0; \\ & -{{x}^{2}}-4x+32 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}+4x-32 \lt 0; \\ & \left(x+8 \right)\left(x-4 \right) \lt 0. \\\end{align}\]

Как видите, в процессе преобразований пришлось умножать на отрицательное число, поэтому поменялся знак неравенства. В самом конце я вновь применил теорему Виета для разложения на множители квадратного трёхчлена. В итоге ответ будет следующий: $x\in \left(-8;4 \right)$ — желающие могут убедиться в этом, нарисовав числовую прямую, отметив точки и посчитав знаки. А мы тем временем перейдём к последнему неравенству из нашего «комплекта»:

\[{{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt 1\]

Как видим, в основании снова стоит иррациональное число, а справа снова стоит единица. Поэтому перепишем наше показательное неравенство следующим образом:

\[{{\left(3-2\sqrt{2} \right)}^{3x-{{x}^{2}}}} \lt {{\left(3-2\sqrt{2} \right)}^{0}}\]

Применяем рационализацию:

\[\begin{align} & \left(3x-{{x}^{2}}-0 \right)\cdot \left(3-2\sqrt{2}-1 \right) \lt 0; \\ & \left(3x-{{x}^{2}}-0 \right)\cdot \left(2-2\sqrt{2} \right) \lt 0; \\ & \left(3x-{{x}^{2}}-0 \right)\cdot 2\left(1-\sqrt{2} \right) \lt 0. \\\end{align}\]

Однако совершенно очевидно, что $1-\sqrt{2} \lt 0$, поскольку $\sqrt{2}\approx 1,4... \gt 1$. Поэтому второй множитель — вновь отрицательная константа, на которую можно разделить обе части неравенства:

\[\begin{matrix} \left(3x-{{x}^{2}}-0 \right)\cdot 2\left(1-\sqrt{2} \right) \lt 0 \\ \Downarrow \\\end{matrix}\]

\[\begin{align} & 3x-{{x}^{2}}-0 \gt 0; \\ & 3x-{{x}^{2}} \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & {{x}^{2}}-3x \lt 0; \\ & x\left(x-3 \right) \lt 0. \\\end{align}\]

Переход к другому основанию

Отдельной проблемой при решении показательных неравенств является поиск «правильного» основания. К сожалению, далеко не всегда при первом взгляде на задание очевидно, что брать за основание, а что делать степенью этого основания.

Но не переживайте: здесь нет никакой магии и «секретных» технологий. В математике любой навык, который нельзя алгоритмизировать, можно легко выработать с помощью практики. Но для этого придётся решать задачи разного уровня сложности. Например, вот такие:

\[\begin{align} & {{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}; \\ & {{\left(\frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & {{\left(0,16 \right)}^{1+2x}}\cdot {{\left(6,25 \right)}^{x}}\ge 1; \\ & {{\left(\frac{27}{\sqrt{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81. \\\end{align}\]

Сложно? Страшно? Да это же проще, чем цыплёнка об асфальт! Давайте попробуем. Первое неравенство:

\[{{2}^{\frac{x}{2}}} \lt {{4}^{\frac{4}{x}}}\]

Ну, я думают, тут и ежу всё понятно:

Переписываем исходное неравенство, сводя всё к основанию «два»:

\[{{2}^{\frac{x}{2}}} \lt {{2}^{\frac{8}{x}}}\Rightarrow \left(\frac{x}{2}-\frac{8}{x} \right)\cdot \left(2-1 \right) \lt 0\]

Да, да, вы всё правильно поняли: я только что применил метод рационализации, описанный выше. Теперь нужно работать аккуратно: у нас получилось дробно-рациональное неравенство (это такое, у которого в знаменателе стоит переменная), поэтому прежде чем что-то приравнивать к нулю, необходимо привести всё к общему знаменателю и избавиться от множителя-константы.

\[\begin{align} & \left(\frac{x}{2}-\frac{8}{x} \right)\cdot \left(2-1 \right) \lt 0; \\ & \left(\frac{{{x}^{2}}-16}{2x} \right)\cdot 1 \lt 0; \\ & \frac{{{x}^{2}}-16}{2x} \lt 0. \\\end{align}\]

Теперь используем стандартный метод интервалов. Нули числителя: $x=\pm 4$. Знаменатель обращается в ноль только при $x=0$. Итого три точки, которые надо отметить на числовой прямой (все точки выколоты, т.к. знак неравенства строгий). Получим:


Более сложный случай: три корня

Как нетрудно догадаться, штриховкой отмечены те интервалы, на которых выражение слева принимает отрицательные значения. Поэтому в окончательный ответ пойдут сразу два интервала:

Концы интервалов не входят в ответ, поскольку исходное неравенство было строгим. Никаких дополнительных проверок этого ответа не требуется. В этом плане показательные неравенства намного проще логарифмических: никаких ОДЗ, никаких ограничений и т.д.

Переходим к следующей задаче:

\[{{\left(\frac{1}{3} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\]

Здесь тоже никаких проблем, поскольку мы уже знаем, что $\frac{1}{3}={{3}^{-1}}$, поэтому всё неравенство можно переписать так:

\[\begin{align} & {{\left({{3}^{-1}} \right)}^{\frac{3}{x}}}\ge {{3}^{2+x}}\Rightarrow {{3}^{-\frac{3}{x}}}\ge {{3}^{2+x}}; \\ & \left(-\frac{3}{x}-\left(2+x \right) \right)\cdot \left(3-1 \right)\ge 0; \\ & \left(-\frac{3}{x}-2-x \right)\cdot 2\ge 0;\quad \left| :\left(-2 \right) \right. \\ & \frac{3}{x}+2+x\le 0; \\ & \frac{{{x}^{2}}+2x+3}{x}\le 0. \\\end{align}\]

Обратите внимание: в третьей строчке я решил не мелочиться и сразу разделить всё на (−2). Минул ушёл в первую скобку (теперь там везде плюсы), а двойка сократилась с множителем-константой. Именно так и стоит поступать при оформлении реальных выкладок на самостоятельных и контрольных работах — не надо расписывать прям каждое действие и преобразование.

Далее в дело вступает знакомый нам метод интервалов. Нули числителя: а их нет. Потому что дискриминант будет отрицательный. В свою очередь знаменатель обнуляется лишь при $x=0$ — как и в прошлый раз. Ну и понятно, что справа от $x=0$ дробь будет принимать положительные значения, а слева — отрицательные. Поскольку нас интересуют именно отрицательные значения, то окончательный ответ: $x\in \left(-\infty ;0 \right)$.

\[{{\left(0,16 \right)}^{1+2x}}\cdot {{\left(6,25 \right)}^{x}}\ge 1\]

А что нужно делать с десятичными дробями в показательных неравенствах? Правильно: избавляться от них, переводя в обыкновенные. Вот и мы переведём:

\[\begin{align} & 0,16=\frac{16}{100}=\frac{4}{25}\Rightarrow {{\left(0,16 \right)}^{1+2x}}={{\left(\frac{4}{25} \right)}^{1+2x}}; \\ & 6,25=\frac{625}{100}=\frac{25}{4}\Rightarrow {{\left(6,25 \right)}^{x}}={{\left(\frac{25}{4} \right)}^{x}}. \\\end{align}\]

Ну и что мы получили в основаниях показательных функций? А получили мы два взаимно обратных числа:

\[\frac{25}{4}={{\left(\frac{4}{25} \right)}^{-1}}\Rightarrow {{\left(\frac{25}{4} \right)}^{x}}={{\left({{\left(\frac{4}{25} \right)}^{-1}} \right)}^{x}}={{\left(\frac{4}{25} \right)}^{-x}}\]

Таким образом исходное неравенство можно переписать так:

\[\begin{align} & {{\left(\frac{4}{25} \right)}^{1+2x}}\cdot {{\left(\frac{4}{25} \right)}^{-x}}\ge 1; \\ & {{\left(\frac{4}{25} \right)}^{1+2x+\left(-x \right)}}\ge {{\left(\frac{4}{25} \right)}^{0}}; \\ & {{\left(\frac{4}{25} \right)}^{x+1}}\ge {{\left(\frac{4}{25} \right)}^{0}}. \\\end{align}\]

Разумеется, при умножении степеней с одинаковым основанием их показатели складываются, что и произошло во второй строчке. Кроме того, мы представили единицу, стоящую справа, тоже в виде степени по основанию 4/25. Осталось лишь выполнить рационализацию:

\[{{\left(\frac{4}{25} \right)}^{x+1}}\ge {{\left(\frac{4}{25} \right)}^{0}}\Rightarrow \left(x+1-0 \right)\cdot \left(\frac{4}{25}-1 \right)\ge 0\]

Заметим, что $\frac{4}{25}-1=\frac{4-25}{25} \lt 0$, т.е. второй множитель является отрицательной константой, и при делении на неё знак неравенства поменяется:

\[\begin{align} & x+1-0\le 0\Rightarrow x\le -1; \\ & x\in \left(-\infty ;-1 \right]. \\\end{align}\]

Наконец, последнее неравенство из текущего «комплекта»:

\[{{\left(\frac{27}{\sqrt{3}} \right)}^{-x}} \lt {{9}^{4-2x}}\cdot 81\]

В принципе, идея решения тут тоже ясна: все показательные функции, входящие в состав неравенства, необходимо свести к основанию «3». Но для этого придётся немного повозиться с корнями и степенями:

\[\begin{align} & \frac{27}{\sqrt{3}}=\frac{{{3}^{3}}}{{{3}^{\frac{1}{3}}}}={{3}^{3-\frac{1}{3}}}={{3}^{\frac{8}{3}}}; \\ & 9={{3}^{2}};\quad 81={{3}^{4}}. \\\end{align}\]

С учётом этих фактов исходное неравенство можно переписать так:

\[\begin{align} & {{\left({{3}^{\frac{8}{3}}} \right)}^{-x}} \lt {{\left({{3}^{2}} \right)}^{4-2x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x}}\cdot {{3}^{4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{8-4x+4}}; \\ & {{3}^{-\frac{8x}{3}}} \lt {{3}^{4-4x}}. \\\end{align}\]

Обратите внимание на 2-ю и 3-ю строчку выкладок: прежде чем что-то делать с неравенством, обязательно приведите его к тому виду, о котором мы говорили с самого начала урока: ${{a}^{x}} \lt {{a}^{n}}$. До тех пор, пока у вас слева или справа есть какие-то левые множители, дополнительные константы и т.д., никакую рационализацию и «зачёркивание» оснований выполнять нельзя ! Бесчисленное множество задач было выполнено неправильно из-за непонимания этого простого факта. Я сам постоянно наблюдаю эту проблему у моих учеников, когда мы только-только приступаем к разбору показательных и логарифмических неравенств.

Но вернёмся к нашей задаче. Попробуем в этот раз обойтись без рационализации. Вспоминаем: основание степени больше единицы, поэтому тройки можно просто зачеркнуть — знак неравенства при этом не поменяется. Получим:

\[\begin{align} & -\frac{8x}{3} \lt 4-4x; \\ & 4x-\frac{8x}{3} \lt 4; \\ & \frac{4x}{3} \lt 4; \\ & 4x \lt 12; \\ & x \lt 3. \\\end{align}\]

Вот и всё. Окончательный ответ: $x\in \left(-\infty ;3 \right)$.

Выделение устойчивого выражения и замена переменной

В заключение предлагаю решить ещё четыре показательных неравенства, которые уже являются довольно сложными для неподготовленных учеников. Чтобы справиться с ними, необходимо вспомнить правила работы со степенями. В частности — вынесение общих множителей за скобки.

Но самое главное — научиться понимать: что именно можно вынести за скобки. Такое выражение называется устойчивым — его можно обозначить новой переменной и таким образом избавиться от показательной функции. Итак, посмотрим на задачи:

\[\begin{align} & {{5}^{x+2}}+{{5}^{x+1}}\ge 6; \\ & {{3}^{x}}+{{3}^{x+2}}\ge 90; \\ & {{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500; \\ & {{\left(0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768. \\\end{align}\]

Начнём с самой первой строчки. Выпишем это неравенство отдельно:

\[{{5}^{x+2}}+{{5}^{x+1}}\ge 6\]

Заметим, что ${{5}^{x+2}}={{5}^{x+1+1}}={{5}^{x+1}}\cdot 5$, поэтому правую часть можно переписать:

Заметим, что никаких других показательных функций, кроме ${{5}^{x+1}}$, в неравенстве нет. И вообще, нигде больше не встречается переменная $x$, поэтому введём новую переменную: ${{5}^{x+1}}=t$. Получим следующую конструкцию:

\[\begin{align} & 5t+t\ge 6; \\ & 6t\ge 6; \\ & t\ge 1. \\\end{align}\]

Возвращаемся к исходной переменной ($t={{5}^{x+1}}$), а заодно вспоминаем, что 1=5 0 . Имеем:

\[\begin{align} & {{5}^{x+1}}\ge {{5}^{0}}; \\ & x+1\ge 0; \\ & x\ge -1. \\\end{align}\]

Вот и всё решение! Ответ: $x\in \left[ -1;+\infty \right)$. Переходим ко второму неравенству:

\[{{3}^{x}}+{{3}^{x+2}}\ge 90\]

Здесь всё то же самое. Заметим, что ${{3}^{x+2}}={{3}^{x}}\cdot {{3}^{2}}=9\cdot {{3}^{x}}$. Тогда левую часть можно переписать:

\[\begin{align} & {{3}^{x}}+9\cdot {{3}^{x}}\ge 90;\quad \left| {{3}^{x}}=t \right. \\ & t+9t\ge 90; \\ & 10t\ge 90; \\ & t\ge 9\Rightarrow {{3}^{x}}\ge 9\Rightarrow {{3}^{x}}\ge {{3}^{2}}; \\ & x\ge 2\Rightarrow x\in \left[ 2;+\infty \right). \\\end{align}\]

Вот примерно так и нужно оформлять решение на настоящих контрольных и самостоятельных работах.

Что ж, попробуем что-нибудь посложнее. Например, вот такое неравенство:

\[{{25}^{x+1,5}}-{{5}^{2x+2}} \gt 2500\]

В чём тут проблема? Прежде всего, основания показательных функций, стоящих слева, разные: 5 и 25. Однако 25 = 5 2 , поэтому первое слагаемое можно преобразовать:

\[\begin{align} & {{25}^{x+1,5}}={{\left({{5}^{2}} \right)}^{x+1,5}}={{5}^{2x+3}}; \\ & {{5}^{2x+3}}={{5}^{2x+2+1}}={{5}^{2x+2}}\cdot 5. \\\end{align}\]

Как видите, сначала мы всё привели к одинаковому основанию, а затем заметили, что первое слагаемое легко сводится ко второму — достаточно лишь разложить показатель. Теперь можно смело вводить новую переменную: ${{5}^{2x+2}}=t$, и всё неравенство перепишется так:

\[\begin{align} & 5t-t\ge 2500; \\ & 4t\ge 2500; \\ & t\ge 625={{5}^{4}}; \\ & {{5}^{2x+2}}\ge {{5}^{4}}; \\ & 2x+2\ge 4; \\ & 2x\ge 2; \\ & x\ge 1. \\\end{align}\]

И вновь никаких трудностей! Окончательный ответ: $x\in \left[ 1;+\infty \right)$. Переходим к заключительному неравенству в сегодняшнем уроке:

\[{{\left(0,5 \right)}^{-4x-8}}-{{16}^{x+1,5}} \gt 768\]

Первое, на что следует обратить внимание — это, конечно, десятичная дробь в основании первой степени. От неё необходимо избавиться, а заодно привести все показательные функции к одному и тому же основанию — числу «2»:

\[\begin{align} & 0,5=\frac{1}{2}={{2}^{-1}}\Rightarrow {{\left(0,5 \right)}^{-4x-8}}={{\left({{2}^{-1}} \right)}^{-4x-8}}={{2}^{4x+8}}; \\ & 16={{2}^{4}}\Rightarrow {{16}^{x+1,5}}={{\left({{2}^{4}} \right)}^{x+1,5}}={{2}^{4x+6}}; \\ & {{2}^{4x+8}}-{{2}^{4x+6}} \gt 768. \\\end{align}\]

Отлично, первый шаг мы сделали — всё привели к одному и тому же основанию. Теперь необходимо выделить устойчивое выражение. Заметим, что ${{2}^{4x+8}}={{2}^{4x+6+2}}={{2}^{4x+6}}\cdot 4$. Если ввести новую переменную ${{2}^{4x+6}}=t$, то исходное неравенство можно переписать так:

\[\begin{align} & 4t-t \gt 768; \\ & 3t \gt 768; \\ & t \gt 256={{2}^{8}}; \\ & {{2}^{4x+6}} \gt {{2}^{8}}; \\ & 4x+6 \gt 8; \\ & 4x \gt 2; \\ & x \gt \frac{1}{2}=0,5. \\\end{align}\]

Естественно, может возникнуть вопрос: каким это образом мы обнаружили, что 256 = 2 8 ? К сожалению, тут нужно просто знать степени двойки (а заодно степени тройки и пятёрки). Ну, или делить 256 на 2 (делить можно, поскольку 256 — чётное число) до тех пор, пока не получим результат. Выглядеть это будет примерно так:

\[\begin{align} & 256=128\cdot 2= \\ & =64\cdot 2\cdot 2= \\ & =32\cdot 2\cdot 2\cdot 2= \\ & =16\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =8\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =4\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & ={{2}^{8}}.\end{align}\]

То же самое и с тройкой (числа 9, 27, 81 и 243 являются её степенями), и с семёркой (числа 49 и 343 тоже было бы неплохо запомнить). Ну, и у пятёрки тоже есть «красивые» степени, которые нужно знать:

\[\begin{align} & {{5}^{2}}=25; \\ & {{5}^{3}}=125; \\ & {{5}^{4}}=625; \\ & {{5}^{5}}=3125. \\\end{align}\]

Конечно, все эти числа при желании можно восстановить в уме, просто последовательно умножая их друг на друга. Однако, когда вам предстоит решить несколько показательных неравенств, причём каждое следующее сложнее предыдущего, то последнее, о чём хочется думать — это степени каких-то там чисел. И в этом смысле данные задачи являются более сложными, нежели «классические» неравенства, которые решаются методом интервалов.

Сравнивать величины и количества при решении практических задач приходилось ещё с древних времён. Тогда же появились и такие слова, как больше и меньше, выше и ниже, легче и тяжелее, тише и громче, дешевле и дороже и т.д., обозначающие результаты сравнения однородных величин.

Понятия больше и меньше возникли в связи со счётом предметов, измерением и сравнением величин. Например, математики Древней Греции знали, что сторона любого треугольника меньше суммы двух других сторон и что против большего угла в треугольнике лежит большая сторона. Архимед, занимаясь вычислением длины окружности, установил, что периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых диаметра.

Символически записывать соотношения между числами и величинами с помощью знаков > и b. Записи, в которых два числа соединены одним из знаков: > (больше), С числовыми неравенствами вы встречались и в младших классах. Знаете, что неравенства могут быть верными, а могут быть и неверными. Например, \(\frac{1}{2} > \frac{1}{3} \) верное числовое неравенство, 0,23 > 0,235 - неверное числовое неравенство.

Неравенства, в которые входят неизвестные, могут быть верными при одних значениях неизвестных и неверными при других. Например, неравенство 2x+1>5 верное при х = 3, а при х = -3 - неверное. Для неравенства с одним неизвестным можно поставить задачу: решить неравенство. Задачи решения неравенств на практике ставятся и решаются не реже, чем задачи решения уравнений. Например, многие экономические проблемы сводятся к исследованию и решению систем линейных неравенств. Во многих разделах математики неравенства встречаются чаще, чем уравнения.

Некоторые неравенства служат единственным вспомогательным средством, позволяющим доказать или опровергнуть существование определённого объекта, например, корня уравнения.

Числовые неравенства

Вы умеете сравнивать целые числа, десятичные дроби. Знаете правила сравнения обыкновенных дробей с одинаковыми знаменателями, но разными числителями; с одинаковыми числителями, но разными знаменателями. Здесь вы научитесь сравнивать любые два числа с помощью нахождения знака их разности.

Сравнение чисел широко применяется на практике. Например, экономист сравнивает плановые показатели с фактическими, врач сравнивает температуру больного с нормальной, токарь сравнивает размеры вытачиваемой детали с эталоном. Во всех таких случаях сравниваются некоторые числа. В результате сравнения чисел возникают числовые неравенства.

Определение. Число а больше числа b, если разность а-b положительна. Число а меньше числа b, если разность а-b отрицательна.

Если а больше b, то пишут: а > b; если а меньше b, то пишут: а Таким образом, неравенство а > b означает, что разность а - b положительна, т.е. а - b > 0. Неравенство а Для любых двух чисел а и b из следующих трёх соотношений a > b, a = b, a Сравнить числа а и b - значит выяснить, какой из знаков >, = или Теорема. Если a > b и Ь > с, то а > с.

Теорема. Если к обеим частям неравенства прибавить одно и то же число, то знак неравенства не изменится.
Следствие. Любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Теорема. Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.
Следствие. Если обе части неравенства разделить на одно и то же положительное число, то знак неравенства не изменится. Если обе части неравенства разделить на одно и то же отрицательное число, то знак неравенства изменится на противоположный.

Вы знаете, что числовые равенства можно почленно складывать и умножать. Далее вы научитесь выполнять аналогичные действия с неравенствами. Умения почленно складывать и умножать неравенства часто применяются на практике. Эти действия помогают решать задачи оценивания и сравнения значений выражений.

При решении различных задач часто приходится складывать или умножать почленно левые и правые части неравенств. При этом иногда говорят, что неравенства складываются или умножаются. Например, если турист прошёл в первый день более 20 км, а во второй - более 25 км, то можно утверждать, что за два дня он прошёл более 45 км. Точно так же если длина прямоугольника меньше 13 см, а ширина меньше 5 см, то можно утверждать, что площадь этого прямоугольника меньше 65 см2.

При рассмотрении этих примеров применялись следующие теоремы о сложении и умножении неравенств:

Теорема. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то a + c > b + d.

Теорема. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: если а > b, c > d и а, b, с, d - положительные числа, то ac > bd.

Неравенства со знаком > (больше) и 1/2, 3/4 b, c Наряду со знаками строгих неравенств > и Точно так же неравенство \(a \geq b \) означает, что число а больше или равно b, т. е. а не меньше b.

Неравенства, содержащие знак \(\geq \) или знак \(\leq \), называют нестрогими. Например, \(18 \geq 12 , \; 11 \leq 12 \) - нестрогие неравенства.

Все свойства строгих неравенств справедливы и для нестрогих неравенств. При этом если для строгих неравенств противоположными считались знаки > и Вы знаете, что для решения ряда прикладных задач приходится составлять математическую модель в виде уравнения или системы уравнений. Далее вы узнаете, что математическими моделями для решения многих задач являются неравенства с неизвестными. Будет введено понятие решения неравенства и показано, как проверить, является ли данное число решением конкретного неравенства.

Неравенства вида
\(ax > b, \quad ax в которых а и b - заданные числа, а x - неизвестное, называют линейными неравенствами с одним неизвестным .

Определение. Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство. Решить неравенство - это значит найти все его решения или установить, что их нет.

Решение уравнений вы осуществляли путём приведения их к простейшим уравнениям. Аналогично при решении неравенств их стремятся с помощью свойств привести к виду простейших неравенств.

Решение неравенств второй степени с одной переменной

Неравенства вида
\(ax^2+bx+c >0 \) и \(ax^2+bx+c где x - переменная, a, b и c - некоторые числа и \(a \neq 0 \), называют неравенствами второй степени с одной переменной .

Решение неравенства
\(ax^2+bx+c >0 \) или \(ax^2+bx+c можно рассматривать как нахождение промежутков, в которых функция \(y= ax^2+bx+c \) принимает положительные или отрицательные значения. Для этого достаточно проанализировать, как расположен график функции \(y= ax^2+bx+c \) в координатной плоскости: куда направлены ветви параболы - вверх или вниз, пересекает ли парабола ось x и если пересекает, то в каких точках.

Алгоритм решения неравенств второй степени с одной переменной:
1) находят дискриминант квадратного трехчлена \(ax^2+bx+c \) и выясняют, имеет ли трехчлен корни;
2) если трехчлен имеет корни, то отмечают их на оси x и через отмеченные точки проводят схематически параболу, ветви которой направлены вверх при a > 0 или вниз при a 0 или в нижней при a 3) находят на оси x промежутки, для которых точки параболы расположены выше оси x (если решают неравенство \(ax^2+bx+c >0 \)) или ниже оси x (если решают неравенство
\(ax^2+bx+c Решение неравенств методом интервалов

Рассмотрим функцию
f(x) = (х + 2)(х - 3)(х - 5)

Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки \((-\infty; -2), \; (-2; 3), \; (3; 5) \) и \((5; +\infty) \)

Выясним, каковы знаки этой функции в каждом из указанных промежутков.

Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:

Вообще пусть функция задана формулой
f(x) = (x-x 1)(x-x 2) ... (x-x n),
где x–переменная, а x 1 , x 2 , ..., x n – не равные друг другу числа. Числа x 1 , x 2 , ..., x n являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.

Это свойство используется для решения неравенств вида
(x-x 1)(x-x 2) ... (x-x n) > 0,
(x-x 1)(x-x 2) ... (x-x n) где x 1 , x 2 , ..., x n - не равные друг другу числа

Рассмотренный способ решения неравенств называют методом интервалов.

Приведем примеры решения неравенств методом интервалов.

Решить неравенство:

\(x(0,5-x)(x+4) Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки \(x=0, \; x=\frac{1}{2} , \; x=-4 \)

Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:

Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.

Ответ:
\(x \in \left(-\infty; \; 1 \right) \cup \left[ 4; \; +\infty \right) \)



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Про деток, от рождения до школы